Get Answers to all your Questions

header-bg qa

If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ =\sqrt{a^{2}+b^{2}-c^{2}}

Answers (1)

best_answer

Solution.     Given:- asinθ + b cosθ = c
squaring both side we get
\left ( a\sin \theta +b\cos \theta \right )^{2}= c^{2}
a^{2}\sin ^{2}\theta +b^{2}\cos ^{2}\theta+2ab\sin \theta \cos \theta = c^{2}
\left ( \because \left ( a+b \right )^{2} = a^{2}+b^{2}+2ab\right )
\Rightarrow 2ab\sin \theta \cos \theta = c^{2}-a^{2}\sin ^{2}\theta -b^{2}\cos ^{2}\theta \cdots \left ( 1 \right )
To prove : acosθ – b sinθ =\sqrt{a^{2}+b^{2}-c^{2}}
Taking left hand side : a cosθ – b sinθ and square it we get
\left ( a\cos \theta -b \sin \theta \right )^{2}
= a^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta -2ab\cos \theta \sin \theta
\left [ \because \left ( a-b \right )^{2} = a^{2}+b^{2}-2ab\right ]
= a^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta -\left ( c^{2}-a^{2}\sin ^{2}\theta -b^{2}\cos ^{2}\theta \right ) \text{[Using (1)]}
= a^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta - c^{2}+a^{2}\sin ^{2}\theta +b^{2}\cos ^{2}\theta
= a^{2}\left ( \cos ^{2}\theta+\sin ^{2}\theta \right )+b^{2}\left ( \sin ^{2}\theta+ \cos ^{2}\right )-c^{2}
= a^{2}+b^{2} - c^{2}      \left ( \because \sin ^{2}\theta +\cos ^{2}\theta = 1 \right )
Hence \left ( a\cos \theta -b\sin \theta \right )^{2}= a^{2}+b^{2}-c^{2}
\Rightarrow \left ( a\cos \theta -b\sin \theta \right )= \sqrt{a^{2}+b^{2}-c^{2}}
Hence proved.

 

 

Posted by

infoexpert27

View full answer