Get Answers to all your Questions

header-bg qa

If an isosceles triangle ABC, in which AB = AC = 6 cm, is inscribed in a circle of radius 9 cm, find the area of the triangle.

Answers (1)

According to question

In \bigtriangleup ABD and \bigtriangleup ACO
AB = AC        [Given]
BO = CO        [Radius]
AO = AO        [Common side]
\therefore \, \bigtriangleup ABO\cong \bigtriangleup ACO [By SSS congruence Criterion]
\angle Q_{1}= \angle Q_{2} [CPCT]
In \bigtriangleup ABD and \bigtriangleup ACD
AB = AC        [given]
\angle Q_{1}= \angle Q_{2}                            
AD = AD        [common side]
\therefore \bigtriangleup ABD\cong \bigtriangleup ACD    [By SAS congruence Criterion]
\angle ADB= \angle ADC  …..(i)   [CPCT]
\angle ADB= \angle ADC= 180^{\circ} …..(ii)
From (i) and (ii)
\angle ADB= 90^{\circ}
OA is a perpendicular which bisects chord BC
  Let AD = x, then OD = 9 – x     \left ( \because OA= 9\, cm \right )        
 Use Pythagoras in \bigtriangleupADC
\left ( AC \right )^{2}= \left ( AD \right )^{2}+\left ( DC \right )^{2}
\left ( 6 \right )^{2}= x^{2}+\left ( DC \right )^{2}
\left ( AC \right )^{2}= 36-x^{2} …..(iii)
In \bigtriangleupODC using Pythagoras' theorem
\left ( OC \right )^{2}= \left ( OD \right )^{2}+\left ( DC \right )^{2}
\left ( DC \right )^{2}= 81-\left ( 9-x \right )^{2}
 …..(iv)
From (iii) and (iv)
36-x^{2}= 81-\left ( 9-x \right )^{2}
36-x^{2}- 81+\left ( 81+x^{2} -18x\right )= 0
\left [ \because \left ( a-b \right )^{2} +a^{2}+b^{2}-2ab\right ]
36-x^{2}-81+81+x^{2}-18x= 0
18x= 36
x= 2
i.e., AD = 2 cm, OD = 9 – 2 = 7 cm
Put the value of x in (iii)
\left ( DC \right )^{2}= 36-4
\left ( DC \right )^{2}= 32
DC= 4\sqrt{2}\, cm
BC= BD+DC
BC= 2DC    \left [ \because BD= DC \right ]
BC= 8\sqrt{2}\, cm
Areas of \bigtriangleup ABC= \frac{1}{2}\times base\times height
= \frac{1}{2}\times \times 8\sqrt{2}\times 2= 8\sqrt{2}\, cm

Posted by

infoexpert27

View full answer