Get Answers to all your Questions

header-bg qa

In Figure, if PQR is tangent to a circle at Q whose center is O, AB is a chord parallel to PR and\angle BQR = 70°, then \angle AQB is equal to

(A) 20°                        (B) 40°                        (C) 35°                        (D) 45°

Answers (1)

Answer(B) 40^{\circ}                       
Solution
Given :\angle BQR= 70^{\circ}, AB\parallel PR
Since DQ perpendicular to PR
\angle DQR= 90^{\circ}
\angle DQR= \angle DQB+\angle BQR
90^{\circ}= \angle DQB+70^{\circ}
\angle DQB= 20^{\circ}
Since DQ bisect \angle AQB
Hence , \angle DQB=\angle DQA= 20^{\circ}
\angle AQB= \angle DQB+\angle DQA
= 20^{\circ}+20^{\circ}= 40^{\circ}
\angle AQB= 40^{\circ}

        

Posted by

infoexpert27

View full answer