Get Answers to all your Questions

header-bg qa

Let f= \left \{(2,4), (5,6), (8, -1), (10, -3)\right \} and   g = \left \{(2, 5), (7,1), (8,4), (10,13), (11, 5)\right \} be two real functions. Then match the following:

a f-g i \left \{ \left ( 2,\frac{4}{5} \right ),\left ( 8,\frac{-1}{4} \right ),\left ( 10,\frac{-3}{13} \right ) \right \}
b f+g ii \left \{ \left ( 2,20 \right ),\left ( 8,-4 \right ),\left ( 10,-39 \right ) \right \}
c fxg iii \left \{ \left ( 2,-1 \right ),\left ( 8,-5 \right ),\left ( 10,-16 \right ) \right \}
d f/g iv \left \{ \left ( 2,9 \right ),\left ( 8,3 \right ),\left ( 10,10 \right ) \right \}

 

Answers (1)

Given data: f= \left \{(2,4), (5,6), (8, -1), (10, -3)\right \} and   g = \left \{(2, 5), (7,1), (8,4), (10,13), (11, 5)\right \}

Domain of f(x)$ is \{2,5,8,10\}, Domain of g(x)$ is \{2,7,8,10,11\}

Now, f-g, f+g, f.g & f/g are defined in the domain \{2,8,10\}

  1. (f-g)2 = f(2) - g(2) = -1

(f-g)(8) = -5

(f-g)(10) = -16

Thus,(f-g) = \left \{(2,-1),(8,-5),(10,16)\right \} 

  1. (f+g) (2)= f(2) + g(2) = 9

(f+g)(8) = 3

(f+g)(10) = 10

Thus, (f+g) = \left \{(2,9),(8,3),(10,10)\right \}

  1. (f.g)(2) = f(2) . g(2) = 20

(f.g) (8)= -4

(f.g)(10) = -39

Thus, (f.g) = \left \{(2,20),(8,-4),(10,-39)\right \}

  1. (f/g)(2) = f(2)/g(2) = 4/52(f/g) = f(2)/g(2) = 4/5

(f/g)(8) = -1/4

(f/g)(10) = -3/13

Thus, V = \left \{(2,4/5), (8,(-1/4), (10,-3/13)\right \}

Thus, the correct matches will be-

(a)\rightarrow (iii), (b)\rightarrow (iv), (c) \rightarrow (ii) \& (d) \rightarrow (i)

Posted by

infoexpert21

View full answer