Get Answers to all your Questions

header-bg qa

Let x\textsubscript{1}, x\textsubscript{2}, ... x\textsubscript{n} be n observations. w\textsubscript{i} = lx\textsubscript{i} + k for i = 1, 2, ...n, where l and k are constants. If the mean of x\textsubscript{i}'s is 48 and their standard deviation is 12, the mean of w_i’s is 55 and standard deviation of w_i’s is 15, the values of l and k should be
A. l = 1.25, k = – 5
B. l = – 1.25, k = 5
C. l = 2.5, k = – 5
D. l = 2.5, k = 5

Answers (1)

\\ Given~x_{1},~x_{2} \ldots ..x_{n}\text{ be n observations } \\ \\ \text{And mean of these n observations, }\overline{x}=48~ \\ \\ \text{And their standard deviation S}D_{x}=12~ \\ \\ \text{Another series of n observations is given such that }w_{i}=lx_{i}+k~~for i=1,2 , \ldots .n \text{where L and k are constants} \\ \\ \text{ And mean of these n observations, }\overline{w}=55~ \text{And their standard deviation} SD_{w}=15 \\ \\ \text{ Applying the given condition for mean we get }w_{i}=lx_{i}+k~ \\ \\ \text{Substituting~the corresponding given values of means, we get }55=l \left( 48 \right) +k \ldots \ldots \left( i \right) \\
\\ \text{ We know that if standard deviation of x series is s, then standard deviation of kx series is ks } \\ \\ \text{ So standard deviation of }x_{1},~x_{2}, \ldots .x_{n}\text{is S}D_{x}\text{~ And hence the SD of l}x_{1}\text{, l}x_{2} \ldots ..lx_{n}\text{ is lS}D_{x}~ \\ \\ \text{Similarly, If standard deviation of x series is s, then standard deviation of k+x series is s,} \\ \\ \text{ So S.D of l}x_{1}\text{, l}x_{2} \ldots . lx_{n}\text{is lS}D_{x} \\ \\ \text{And hence the SD of l}x_{1}+k, lx_{2}+k \ldots ..lx_{n}+k is lSD_{x}~ \\ \\ \text{ So applying the given condition for standard deviation we get S}D_{w}=lSD_{x}~ \\ \\ \text{Substituting the given values we get }15=l \left( 12 \right) ~ l=\frac{15}{12}=1.25 \\ \\ \text{ Now substituting the value of l in equation } \left( i \right) ,~\text{we get} 55= \left( 1.25 \right) \left( 48 \right) +k \\ \\ ~ 55=60+k \\ \\ ~ k=-5 \\

Posted by

infoexpert21

View full answer