Get Answers to all your Questions

header-bg qa

The mean and standard deviation of a set of n_1 observations are \bar{X_1} and s_1, respectively while the mean and standard deviation of another set of n_2 observations are \bar{X_2} and s_2, respectively. Show that the standard deviation of the combined set of (n_1 + n_2) observations is given by

\mathrm{SD}=\sqrt{\frac{\mathrm{n}_{1}\left(\mathrm{s}_{1}\right)^{2}+\mathrm{n}_{2}\left(\mathrm{s}_{2}\right)^{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}+\frac{\mathrm{n}_{1} \mathrm{n}_{2}\left(\overline{\mathrm{x}}_{1}-\overline{\mathrm{x}}_{2}\right)^{2}}{\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)^{2}}}

Answers (1)

\\\\ \text{It is given that mean and Standard deviation of a set of }n_{1}\text{ observations are }\overline{x_{1}}~and~ \sigma _{1}~respectively~ \\\\ \\ \text{while the mean and standard deviation of naother set of }n_{2}\text{observations are }\overline{x_{2}}~and~ \sigma _{2}respectively \] \\ \overline{x_{1}}=\frac{1}{n_{1}} \sum _{i=1}^{n_{1}}x_{i} \\\\ \\ \overline{x_{2}}=\frac{1}{n_{2}} \sum _{j=1}^{n_{2}}y_{j} \\\\ \\ \overline{x}=\frac{1}{ \left( n_{1}+n_{2} \right) } \left[ \sum _{i=1}^{n_{1}}x_{i}+ \sum _{j=1}^{n_{2}}y_{j} \right] =\frac{n_{1}\overline{x_{1}}+n_{2}\overline{x_{2}}}{n_{1}+n_{2}} \\\\ \\ \sigma _{1}^{2}=\frac{1}{n_{1}} \sum _{i=1}^{n_{1}} \left( x_{i}-\overline{x} \right) ^{2} \\\\

 


\\ \sigma _{2}^{2}=\frac{1}{n_{2}} \sum _{j=1}^{n_{2}} \left( y_{j}-\overline{x} \right) ^{2} \\\\ \\ \sigma ^{2}= \sigma _{1}^{2}+ \sigma _{2}^{2}=\frac{1}{n_{1}+n_{2}} \left[ \sum _{i=1}^{n_{1}} \left( x_{i}-\overline{x} \right) ^{2}+\frac{1}{n_{2}} \sum _{j=1}^{n_{2}} \left( y_{j}-\overline{x} \right) ^{2} \right] \\\\ \\ \sum _{i=1}^{n_{1}} \left( x_{i}-\overline{x} \right) ^{2}= \sum _{i=1}^{n_{1}} \left( x_{i}-\overline{x_{j}}+\overline{x_{j}}-\overline{x} \right) ^{2} \\\\ \\ = \sum _{i=1}^{n_{1}} \left( x_{i}-\overline{x_{j}} \right) ^{2}+n_{1} \left( \overline{x_{j}}-\overline{x} \right) ^{2}+2 \left( \overline{x_{j}}-\overline{x} \right) \sum _{i=1}^{n_{1}} \left( x_{i}-\overline{x_{j}} \right) \\\\ \\ \sum _{i=1}^{n_{1}} \left( x_{i}-\overline{x_{j}} \right) =0 \\\\


\\ \sum _{i=1}^{n_{1}} \left( x_{i}-\overline{x} \right) ^{2}=n_{1}s_{1}^{2}+n_{1} \left( \overline{x_{1}}-\overline{x} \right) ^{2} \\\\ \\ d_{1}=\overline{x_{1}}-\overline{x} \\\\ \\ =\overline{x_{1}}-\frac{n_{1}\overline{x_{1}}+n_{2}\overline{x_{2}}}{n_{1}+n_{2}} \\\\ \\ =\frac{n_{2} \left( \overline{x_{1}}-\overline{x_{2}} \right) }{n_{1}+n_{2}} \\\\ \\ \sum _{i=1}^{n_{1}} \left( x_{i}-\overline{x} \right) ^{2}=n_{1}s_{1}^{2}+\frac{n_{1}n_{2}^{2} \left( \overline{x_{1}}-\overline{x_{2}} \right) ^{2}}{ \left( n_{1}+n_{2} \right) ^{2}} \\\\ \\ \sum _{j=1}^{n_{2}} \left( y_{j}-\overline{x} \right) ^{2}= \sum _{j=1}^{n_{2}} \left( y_{j}-\overline{x_{i}}+\overline{x_{i}}-\overline{x} \right) ^{2} \\\\
\\ = \sum _{j=1}^{n_{2}} \left( y_{j}-\overline{x_{i}} \right) ^{2}+n_{2} \left( \overline{x_{i}}-\overline{x} \right) ^{2}+2 \left( \overline{x_{i}}-\overline{x} \right) \sum _{j=1}^{n_{2}} \left( y_{j}-\overline{x_{i}} \right) \\\\ \\ \sum _{j=1}^{n_{2}} \left( y_{j}-\overline{x_{i}} \right) =0 \\\\ \\ \sum _{j=1}^{n_{2}} \left( y_{j}-\overline{x} \right) ^{2}=n_{2}s_{2}^{2}+n_{2} \left( \overline{x_{2}}-\overline{x} \right) ^{2} \\\\ \\ d_{2}=\overline{x_{2}}-\overline{x} \\\\ \\ =\overline{x_{2}}-\frac{n_{1}\overline{x_{1}}+n_{2}\overline{x_{2}}}{n_{1}+n_{2}} \\\\ \\ =\frac{n_{1} \left( \overline{x_{2}}-\overline{x_{1}} \right) }{n_{1}+n_{2}} \\\\
\\ \sum _{j=1}^{n_{2}} \left( x_{i}-\overline{x} \right) ^{2}=n_{2}s_{2}^{2}+\frac{n_{1}^{2}n_{2} \left( \overline{x_{2}}-\overline{x_{1}} \right) ^{2}}{ \left( n_{1}+n_{2} \right) ^{2}} \\\\ \\ \sigma ^{2}= \sigma _{1}^{2}+ \sigma _{2}^{2}=\frac{1}{n_{1}+n_{2}} \left[ \sum _{i=1}^{n_{1}} \left( x_{i}-\overline{x} \right) ^{2}+ \sum _{j=1}^{n_{2}} \left( y_{j}-\overline{x} \right) ^{2} \right] \\\\ \\ =\frac{1}{n_{1}+n_{2}} \left[ n_{1}s_{1}^{2}+\frac{n_{1}n_{2}^{2} \left( \overline{x_{1}}-\overline{x_{2}} \right) ^{2}}{ \left( n_{1}+n_{2} \right) ^{2}}+n_{2}s_{2}^{2}+\frac{n_{1}^{2}n_{2} \left( \overline{x_{2}}-\overline{x_{1}} \right) ^{2}}{ \left( n_{1}+n_{2} \right) ^{2}} \right] \\\\ \\ =\frac{1}{n_{1}+n_{2}} \left[ n_{1}s_{1}^{2}+n_{2}s_{2}^{2}+\frac{n_{1}n_{2} \left( \overline{x_{1}}-\overline{x_{2}} \right) ^{2}}{ \left( n_{1}+n_{2} \right) ^{2}} \left( n_{1}+n_{2} \right) \right] \\\\

\\ =\frac{n_{1}s_{1}^{2}+n_{2}s_{2}^{2}}{n_{1}+n_{2}}+\frac{n_{1}n_{2} \left( \overline{x_{1}}-\overline{x_{2}} \right) ^{2}}{ \left( n_{1}+n_{2} \right) ^{2}} \\\\ \\ \sigma =\sqrt {\frac{n_{1}s_{1}^{2}+n_{2}s_{2}^{2}}{n_{1}+n_{2}}+\frac{n_{1}n_{2} \left( \overline{x_{1}}-\overline{x_{2}} \right) ^{2}}{ \left( n_{1}+n_{2} \right) ^{2}}} \\\\

Posted by

infoexpert21

View full answer