Get Answers to all your Questions

header-bg qa

To draw a pair of tangents to a circle which are inclined to each other at an Angle of 60^{\circ}, it is required to draw tangents at end points of those two radii of The circle, the angle between them should be

(A) 135^{\circ}                      (B) 90^{\circ}                        (C) 60^{\circ}                      (D) 120^{\circ}

Answers (1)

Answer(D) 120°
Solution
According to question:-

Given :\angle QPR= 60^{\circ}
Let       \angle QOR= x
 As we know that angle between tangent and radius of a circle is 90

\angle PQO= \angle PRO= 90^{\circ}
 We know that \angle PQO+ \angle PRO+ \angle QPR+\angle QOR= 360^{\circ}  

                                                       [\because sum of interior angles of quadrilateral is 360^{\circ} ]

90^{\circ}+90^{\circ}+x+60^{\circ}= 360^{\circ}|
240+x= 360^{\circ}
x= 120^{\circ}

 

Posted by

infoexpert27

View full answer