Get Answers to all your Questions

header-bg qa

Write the correct answer in each of the following:
If one of the angles of a triangle is 130°, then the angle between the bisectors of the other two angles can be 

(A) 50^{\circ}

(B) 65^{\circ}

(C) 145^{\circ}

(D) 155^{\circ}

Answers (1)

Answer: (D) 155^{\circ}

Solution.

In \triangle ABC


 

\angle A +\angle B + \angle C = 180^{\circ}

[Sum of all interiors angles of triangle is 180^{\circ}]

\Rightarrow \frac{1}{2}\angle A+\frac{1}{2}\angle B + \frac{1}{2}\angle C = \frac{180^{\circ}}{2} =90^{\circ}                          

\Rightarrow \frac{1}{2} \angle B+ \frac{1}{2}\angle C=90^{\circ}-\frac{1}{2}\angle A................(1)

 \text{Since, in}\triangle BOC

 \text{As BO and OC are the angle bisectors of }\angle ABC  \text{and }\angle BCA,

 

\frac{\angle B}{2}+ \frac{\angle C}{2}+\angle BOC=180^{\circ}..................(2)

Put value of equation (1) in equation (2)

90^{\circ} -\frac{1}{2}\angle A+\angle BOC =180^{\circ}
\angle BOC = 180^{\circ} - 90^{\circ} + \frac{1}{2}\angle A

\angle BOC = 90^{\circ} + \frac{1}{2}\angle A                                                          

  \therefore \angle A=130^{\circ} 

\angle BOC= 90^{\circ}+\frac{1}{2}\times 130^{\circ}

\angle BOC= 90^{\circ} + 65^{\circ}

\angle BOC= 155^{\circ}

Posted by

infoexpert26

View full answer