Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Function Exercise 2.4 Question 14 Maths Textbook Solution.

Answers (1)

Answer:

                f^{-1}\left ( y \right )g\left ( y \right )=\frac{\sqrt{25y+5 4}-3}{5}

Given:

                f:R^{+}\rightarrow \left [ -9,\infty \right ] given by f\left ( x \right )=5x^{2}+6x-9.

We need to prove that f^{-1}\left ( y \right )=\frac{\sqrt{54+25y}-3}{5}

Solution:

                f\left ( x \right )=5x^{2}+6x-9

Let          y=5x^{2}+6x-9

Dividing by5,

                = x^{2}+\frac{6}{5}x-\frac{9}{5}

                = x^{2}+2x\frac{3}{5}+\frac{9}{25}-\frac{9}{25}-\frac{9}{5}

                = x^{2}+\left ( 2x\times \frac{3}{5} \right )+\left ( \frac{3}{5} \right )^{2}-\frac{9}{25}-\frac{9}{5}                                                       \left [ \because \left ( a+b \right )^{2}=a^{2}+2ab+b^{2} \right ]

                = \left ( x+\frac{3}{5} \right )^{2}-\frac{9-45}{25}

           y= \left ( x+\frac{3}{5} \right )^{2}-\frac{54}{25}

\sqrt{y+\frac{54}{25}}=\left ( x+\frac{3}{5} \right )

\sqrt{\frac{25y+54}{25}}= x+\frac{3}{5}

         x=\frac{\sqrt{25y+54}}{5}-\frac{3}{5}

                x=\frac{\sqrt{25y+54}-3}{5}

Let          g\left ( y \right )=\frac{\sqrt{25y+54}-3}{5}

Now,

                fog\left ( y \right )=f\left ( g\left ( y \right ) \right )

                                =f\left (\frac{\sqrt{25y+54}-3}{5} \right )

                                =5\left (\frac{\sqrt{25y+54}-3}{5} \right )^{2}+6\left (\frac{\sqrt{25y+54}-3}{5} \right )-9

                                =5\left (\frac{25y+54+9-6\sqrt{25y+54-3}}{25} \right )+\left (\frac{6\sqrt{25y+54}-18}{5} \right )-9

                                =\frac{25y+63-6\sqrt{25y+54}}{5} +\frac{6\sqrt{25y+54}-18}{5} -9

                                =\frac{25y+63-18-45}{5}

                                =\frac{25y}{5}

                                =5y

Identity function,

Also,      gof\left ( x \right )=g\left ( f\left ( x \right ) \right )

                                =g\left ( 5x^{2}+6x-9 \right )

                                = \frac{\sqrt{5\left ( 5x^{2}+6x-9 \right )+54}-3}{5}

                                = \frac{\sqrt{25x^{2}+30x-45+54}-3}{5}

                                = \frac{\sqrt{25x^{2}+30x+9}-3}{5}

                                =\frac{\sqrt{\left ( 5x+3 \right )^{2}}-3}{5}

                                =\frac{5x+3-3}{5}

                                = x

So, f is invertible, an identity function.

                f\left ( y \right )=g\left ( y \right )=\frac{\sqrt{25y+54}-3}{5}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads