Get Answers to all your Questions

header-bg qa

Hydrogen atom has only one electron, so mutual repulsion between electrons is absent. However, in multielectron atoms mutual repulsion between the electrons is significant. How does this affect the energy of an electron in the orbitals of the same principal quantum number in multielectron atoms?

Answers (1)

The energy of an electron in a hydrogen atom is determined by the principal quantum number. Thus, the energy of the orbitals increases as: 1s< 2s= 2p< 3s= 3p= 3d< 4s= 4p < 4d= 4f.

However, the energy of an electron in a multielectron atom is dependent on not just the principal quantum number (shell) as well as also on the azimuthal quantum number (subshell) which is quite unlike that of an hydrogen atom. This implies that, for a given principal quantum number, s, p, d, f, all will have different energies.

 

Posted by

infoexpert22

View full answer