In $\triangle A B C, B C=A B$ and $\angle B=80^{\circ}$. Then $\angle A$ is equal to
(A) $40^{\circ}$
(B) $80^{\circ}$
(C) $50^{\circ}$
(D) $60^{\circ}$
Solution.
We know that angles opposite to equal sides of a triangle are equal
Here, $A B=B C$ and $\angle C$ is opposite to side $A B$ and $\angle A$ is opposite to side $B C$
$
\begin{aligned}
& \therefore \angle \mathrm{C}=\angle \mathrm{A}=\mathrm{x}(\text { Assume }) \\
& \angle \mathrm{B}=80^{\circ} \text { (Given) } \\
& \because \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \\
& \Rightarrow \mathrm{x}+80^{\circ}+\mathrm{x}=180^{\circ} \\
& \Rightarrow 2 \mathrm{x}=100^{\circ} \\
& \Rightarrow \mathrm{x}=50^{\circ}
\end{aligned}
$
Hence option (C) is correct.