Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 25 Scalar Triple Product Exercise 25.1 Question 11 Maths Textbook Solution.

Answers (1)

write the ques number in proper format

Answer??

Hint :- When vectors are perpendicular their dot product is zero.

Given:-  \vec{a},\vec{b}\vec{c}  be position vectors of A, B & C

\begin{aligned} &\therefore \overrightarrow{A B}=(\vec{b}-\vec{a}) \\ &\overrightarrow{B C}=(\vec{c}-\vec{b}) \\ &\overrightarrow{C A}=(\vec{a}-\vec{c}) \end{aligned}

If a vector given \left ( \vec{a}\times \vec{b} \right )+\left ( \vec{b}\times \vec{c} \right )+\left ( \vec{c}\times \vec{a} \right ) is perpendicular to the plane of triangle ABC then its dot product with the vector \overrightarrow{AB},\overrightarrow{BC},\overrightarrow{CA} must be zero

\begin{aligned} &\overrightarrow{A B} \cdot[(\vec{a} \times \vec{b})+(\vec{b} \times \vec{c})+(\vec{c} \times \vec{a})]\\ &=[(\vec{b}-\vec{a}) \cdot(\vec{a} \times \vec{b})]+[(\vec{b}-\vec{a}) \cdot(\vec{b} \times \vec{c})]+[(\vec{b}-\vec{a}) \cdot(\vec{c} \times \vec{a})]\\ \end{aligned}

\begin{aligned} &=[(\vec{b} \cdot(\vec{a} \times \vec{b})]-[\vec{a} \cdot(\vec{a} \times \vec{b})]+[\vec{b} \cdot(\vec{b} \times \vec{c})]-[\vec{a} \cdot(\vec{b} \times \vec{c})]+[(\vec{b} \cdot(\vec{c} \times \vec{a})]-[\vec{a} \cdot(\vec{c} \times \vec{a})]\\ \end{aligned}

=\left[\begin{array}{lll} \vec{b} & \vec{a} & \vec{b} \end{array}\right]-\left[\begin{array}{lll} \vec{a} & \vec{a} & \vec{b} \end{array}\right]+\left[\begin{array}{lll} \vec{b} & \vec{b} & \vec{c} \end{array}\right]-\left[\begin{array}{lll} \vec{a} & \vec{b} & c \end{array}\right]+\left[\begin{array}{lll} \vec{b} & \vec{c} & a \end{array}\right]-\left[\begin{array}{lll} \vec{a} & \vec{c} & \vec{a} \end{array}\right]

\begin{aligned} &=0-0+0-[\vec{a} \vec{b} \vec{c}]+[\vec{a} \vec{b} \vec{c}]-0 \\ &=0 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \quad(\because[\vec{b} \vec{c} \vec{a}]=[\vec{a} \vec{b} \vec{c}]) \end{aligned}

\begin{aligned} &\overrightarrow{B C} \cdot[(\vec{a} \times \vec{b})+(\vec{b} \times \vec{c})+(\vec{c} \times \vec{a})] \\\\ &=[\vec{c}-\vec{b}][(\vec{a} \times \vec{b})+(\vec{b} \times \vec{c})+(\vec{c} \times \vec{a})] \end{aligned}

=\left[\begin{array}{lll} \vec{c} & \vec{a} & \vec{b} \end{array}\right]-\left[\begin{array}{lll} \vec{b} & \vec{a} & \vec{b} \end{array}\right]+\left[\begin{array}{lll} \vec{c} & \vec{b} & \vec{c} \end{array}\right]-\left[\begin{array}{lll} \vec{b} & \vec{b} & \vec{c} \end{array}\right]+\left[\begin{array}{lll} \vec{c} & \vec{c} & \vec{a} \end{array}\right]-\left[\begin{array}{lll} \vec{b} & \vec{c} & \vec{a} \end{array}\right]

    =\left [ \vec{c}\: \: \vec{a}\: \: \vec{b} \right ]+0+0-0-0-\left [ \vec{a}\: \: \vec{b}\: \: \vec{c} \right ]

=0                                                                           =\left ( \because \left [ \vec{c}\: \: \vec{a}\: \: \vec{b} \right ]=\left [ \vec{a}\: \: \vec{b}\: \: \vec{c} \right ] \right )

     Similarly,

\begin{aligned} &\overrightarrow{C A} \cdot[(\vec{a} \times \vec{b})+(\vec{b} \times \vec{c})+(\vec{c} \times \vec{a})] \\\\ &=[\vec{a}-\vec{c}][(\vec{a} \times \vec{b})+(\vec{b} \times \vec{c})+(\vec{c} \times \vec{a})] \end{aligned}

=\left[\begin{array}{lll} \vec{a} & \vec{a} & \vec{b} \end{array}\right]-\left[\begin{array}{lll} \vec{c} & \vec{a} & \vec{b} \end{array}\right]+\left[\begin{array}{lll} \vec{a} & \vec{b} & \vec{c} \end{array}\right]-\left[\begin{array}{lll} \vec{c} & \vec{b} & \vec{c} \end{array}\right]+\left[\begin{array}{lll} \vec{a} \vec{c} & \vec{a} \end{array}\right]-\left[\begin{array}{lll} \vec{c} & \vec{a} \end{array}\right]

=0-\left [ \vec{c}\: \: \vec{a}\: \: \vec{b} \right ]\left [ \vec{c}\: \vec{a}\: \vec{b} \ \right ]-0+0-0

=0

As, dot product of all vectors is zero. We can say that \left ( \vec{a}\times \vec{b} \right )+\left ( \vec{b}\times \vec{c} \right )+\left ( \vec{c}\times \vec{a} \right ) is perpendicular to the plane of triangle ABC.

 

 

 

 

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads