Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 25 Scalar Triple Product Exercise 25.1 Question 13 Maths Textbook Solution.

Answers (1)

Answer :-  \lambda =5

Hint :- If the shown are coplanar, their scalar triple product is zero.

Given:- points

\begin{aligned} &\mathrm{A}=3 \hat{\imath}+2 \hat{\jmath}+\hat{k} \\ &\mathrm{~B}=4 \hat{\imath}+\lambda \hat{\jmath}+5 \hat{k} \\ &\mathrm{C}=4 \hat{\imath}+2 \hat{\jmath}-2 \hat{k} \\ &\mathrm{D}=6 \hat{\imath}+5 \hat{\jmath}-\hat{k} \end{aligned}

Vectors formed by these points are coplanar.

 So, we will form any three vectors & their scalar triple product will be zero & will get the value of \lambda.

\begin{aligned} &\therefore \overrightarrow{A B}=(4 \hat{\imath}+\lambda \hat{\jmath}+5 \hat{k})-(3 \hat{\imath}+2 \hat{\jmath}+\hat{k}) \\ &=(4-3) \hat{\imath}+(\lambda-2) \hat{\jmath}+(5-1) \hat{k} \\ &=\hat{\imath}+(\lambda-2) \hat{\jmath}+4 \hat{k} \\ \end{aligned}

\begin{aligned} &\overrightarrow{A C}=(4 \hat{\imath}+2 \hat{\jmath}-2 \hat{k})-(3 \hat{\imath}+2 \hat{\jmath}+\hat{k}) \\ &=(4-3) \hat{\imath}+(2-2) \hat{\jmath}+(-2-1) \hat{k} \end{aligned}

=\hat{i}-3\hat{k}

\begin{aligned} &\overrightarrow{A D}=(6 \hat{\imath}+5 \hat{\jmath}-\hat{k})-(3 \hat{\imath}+2 \hat{\jmath}+\hat{k}) \\ &=(6-3) \hat{\imath}+(5-2) \hat{\jmath}+(-1-1) \hat{k} \\ &=3 \hat{\imath}+3 \hat{\jmath}-2 \hat{k} \end{aligned}

\begin{aligned} &{[\overrightarrow{A B} \overrightarrow{A C} \overrightarrow{A D}]=0} \\ &=\left|\begin{array}{ccc} 1 & (\lambda-2) & 4 \\ 1 & 0 & -3 \\ 3 & 3 & -2 \end{array}\right| \end{aligned}

\begin{aligned} &=1(0+9)-(\lambda-2)(-2+9)+4(3-0) \\ &=9-(\lambda-2)(7)+12 \\ &=9-7 \lambda+14+12 \\ \end{aligned}

\begin{aligned} &=35-7 \lambda \\ &\therefore 35-7 \lambda=0 \\ &\therefore 7\lambda=35 \\ &\lambda=5 \end{aligned}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads