Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma Maths Class 12 Chapter 25 Scalar Triple Product Exercise Very Short Answer Question, question 5.

Answers (1)

Answer:

Hint:

Use scalar triple product formula.

Given:

Given vectors are  .

Solution:

Let

\left.\begin{array}{c} \vec{\alpha}=\hat{\imath}+\hat{\jmath} \\ \vec{\beta}=\hat{\imath}+2 \hat{\jmath} \\ \vec{\gamma}=\hat{\imath}+\hat{\jmath}+\pi \hat{k} \end{array}\right\}                        Eq.(i)

We know that the volume of a parallel piped whose three adjacent edge are

\vec{\alpha} \; \; \vec{\beta}\: \text{and} \: \vec{\gamma}  is equal to modulus of scalar triple product i.e. \left |\left [\vec{\alpha} \; \; \vec{\beta}\: \: \vec{\gamma} \right ] \right |

So, first we will find \left[\begin{array}{lll} \vec{\alpha} & \vec{\beta} & \vec{\gamma} \end{array}\right] \text { then }\left|\left[\begin{array}{lll} \vec{\alpha} & \vec{\beta} & \vec{\gamma} \end{array}\right]\right|

\begin{aligned} &\therefore\left[\begin{array}{lll} \vec{\alpha} & \vec{\beta} & \vec{\gamma} \end{array}\right]=\vec{\alpha} \cdot(\vec{\beta} \times \vec{\gamma}) \\ &=(\hat{\imath}+\hat{\jmath}) \cdot\{(\hat{\imath}+2 \hat{\jmath}) \times(\hat{\imath}+\hat{\jmath}+\pi \hat{k})\} \end{aligned}                                                        From (1)

\begin{aligned} &=(\hat{\imath}+\hat{\jmath}) \cdot\left|\begin{array}{lll} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 2 & 0 \\ 1 & 1 & \pi \end{array}\right| \\ &=(\hat{\imath}+\hat{\jmath}) \cdot\{\hat{\imath}(2 \pi-0)-\hat{\jmath}(\pi-0)+\hat{k}(1-2)\} \\ &=(\hat{\imath}+\hat{\jmath}) \cdot\{2 \pi \hat{\imath}-\pi \hat{\jmath}-\hat{k}\} \end{aligned}

\begin{aligned} &=2 \pi(\hat{\imath} . \hat{\imath})-\pi(\hat{\imath} . \hat{\jmath})-(\hat{\imath} . \hat{k})+2 \pi(\hat{\jmath} \cdot \hat{\imath})-\pi(\hat{\jmath} \cdot \hat{\jmath})-(\hat{\jmath} \cdot \hat{k})\\ &=2 \pi-\pi=\pi \end{aligned}

Now, \left |\left [\vec{\alpha} \; \; \vec{\beta}\: \: \vec{\gamma} \right ] \right |=\left |\pi \right |=\pi cubic units

 

 

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads