Get Answers to all your Questions

header-bg qa

Explain Solution R.D. Sharma Class 12 Chapter 25 Scalar Triple Product Exercise 25.1 Question 14 Maths Textbook Solution.

Answers (1)

Answer :-  x=6

Hint :- If given vectors  are coplanar, than their scalar triple product is always zero.

Given:-   \begin{aligned} &\mathrm{A}=4 \hat{\imath}+3 \hat{\jmath}+3 \hat{k} \\ \end{aligned}

\begin{aligned} &\mathrm{B}=5 \hat{\imath}+x \hat{\jmath}+7 \hat{k} \\ &\mathrm{C}=5 \hat{\imath}+3 \hat{\jmath} \\ &\mathrm{D}=7 \hat{\imath}+6 \hat{j}+\hat{k} \end{aligned}

We have to form any three vectors from above points & make their scalar triple product is zero to find the value of x.

\begin{aligned} &\therefore \overrightarrow{A B}=(5 \hat{\imath}+x \hat{\jmath}+7 \hat{k})-(4 \hat{\imath}+3 \hat{\jmath}+3 \hat{k}) \\ &=(5-4) \hat{\imath}+(\mathrm{x}-3) \hat{\jmath}+(7-3) \hat{k} \\ &=\hat{\imath}+(\mathrm{x}-3) \hat{\jmath}+4 \hat{k} \\ \end{aligned}

\begin{aligned} &\overrightarrow{A C}=(5 \hat{\imath}+3 \hat{\jmath})-(4 \hat{\imath}+3 \hat{\jmath}+3 \hat{k}) \\ &=(5-4) \hat{\imath}+(3-3) \hat{\jmath}+(0-3) \hat{k} \end{aligned}

=\hat{i}-3\hat{k}

\begin{aligned} &\overrightarrow{A D}=(7 \hat{\imath}+6 \hat{\jmath}+\hat{k})-(4 \hat{\imath}+3 \hat{\jmath}+3 \hat{k}) \\ &=(7-4) \hat{\imath}+(6-3) \hat{\jmath}+(1-3) \hat{k} \\ &=3 \hat{\imath}+3 \hat{\jmath}-2 \hat{k} \end{aligned}

We know \left [ \overrightarrow{AB}\overrightarrow{AC}\overrightarrow{AD} \right ]=0

\therefore\left|\begin{array}{ccc} 1 & (x-3) & 4 \\ 1 & 0 & -3 \\ 3 & 3 & -2 \end{array}\right|

\begin{aligned} &=1(0+9)-(\mathrm{x}-3)(-2+9)+4(3-0) \\ &=9-7 \mathrm{x}+21+12 \\ &=42-7 \mathrm{x} \\ &\therefore 42-7 \mathrm{x}=0 \\ &\therefore 7 \mathrm{x}=42 \\ &\mathrm{x}=6 \end{aligned}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads