Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter Increasing and Decreasing Functions exercise 16.2 question 1 subquestion vii

Answers (1)

Answer:

\text {Increasing interval} (-\infty,-2) \cup(4, \infty) \\ \text {Decreasing interval} (-2,4)

Given:

Here given that

f(x)=5x^{3}-15x^{2}-120x+3

To find:

We have to find out the intervals in which function is increasing and decreasing.

Hint:

Put f(x)=0 and solve this equation to find critical points of given function.

Solution:

We have,

f(x)=5x^{3}-15x^{2}-120x+3

Differentiating with respect to x we get,

\begin{aligned} &f^{\prime}(x)=\frac{d}{d x}\left(5 x^{3}-15 x^{2}-120 x+3\right) \\ &f^{\prime}(x)=15 x^{2}-30 x-120 \end{aligned}

Now we have to find critical points for f(x).

We must have,

\begin{aligned} &f^{\prime}(x)=0\\ &\Rightarrow 15 x^{2}-30 x-120=0\\ &\Rightarrow 15\left(x^{2}-2 x-8\right)=0\\ &\Rightarrow x^{2}-2 x-8=0\{\therefore 15>0\}\\ &\Rightarrow x^{2}-4 x+2 x-8=0\\ &\Rightarrow x(x-4)+2(x-4)=0\\ &\Rightarrow(x-4)(x+2)=0\\ &\Rightarrow x-4=0 \text { and } x+2=0\\ &\Rightarrow x=4 \text { and } x=-2\\ &\text { Clearly, } f^{\prime}(x)>0 \text { if } x<-2 \text { and } x>4 \text { or } x \in(-\infty,-2) \text { and } x \in(4, \infty) \text { and } f^{\prime}(x)<0 \text { if } \end{aligned}

\begin{aligned} &-2<x<4 \text { or } x \in(-2,4)\\ &\text { Thus, } f(x) \text { is increasing on the interval }(-\infty,-2) \cup(4, \infty) \text { and } f(x) \text {is decreasing on interval} (-2,4). \end{aligned}

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads