Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class 12 chapter 31 Mean and Variance of a Random Variable exercise 31.1 question 10 maths textbook solution

Answers (1)

Answer: Required probability distribution is 

X 0 1 2 3
P\left ( X \right ) \frac{1}{6} \frac{1}{2} \frac{3}{10} \frac{1}{30}


Hint: Let x denotes number of red balls out of 3 drawn. Then x=0,1,2,3

Given:  A bag has 4 red and 6 black balls, three balls are drawn

Solution:

  P( no red balls )=P(x=0)=\frac{6 C 3}{10 c_{3}}=\frac{6 \times 5 \times 4}{3 \times 2}=\frac{3 \times 2}{10 \times 9 \times 8}=\frac{1}{6}

P( one red balls )=P(x=1)=\frac{4 C 1 \times 6 C 2}{10 C 3}=\frac{4 \times 6 \times 5}{2}=\frac{3 \times 2}{10 \times 9 \times 8}=\frac{1}{2}

P( two red balls )=P(x=2)=\frac{4 C 2 \times 6 C 1}{10 C 3}=\frac{4 \times 3 \times 6}{2}=\frac{3 \times 2}{10 \times 9 \times 8}=\frac{3}{10}

P( all three red )=P(x=3)=\frac{4 C 3}{10 C 3}=\frac{4 \times 3 \times 2}{10 \times 9 \times 8}=\frac{1}{30}

The required probability distribution is

X 0 1 2 3
P\left ( X \right ) \frac{1}{6} \frac{1}{2} \frac{3}{10} \frac{1}{30}
Posted by

Infoexpert

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads