Get Answers to all your Questions

header-bg qa

Let \bar{x} be the mean of x_1,\ x_2........., x_n  and \bar{y} the mean of y_{1}, y_{2}, ... , y_{n}. If \bar{z} is the mean of x_1,\ x_2........., x_ny_{1}, y_{2}, ... , y_{n} then \bar{z} is equal to

(A) \bar{x}+\bar{y}

(B) \frac{\bar{x}+\bar{y}}{2}

(C) \frac{\bar{x}+\bar{y}}{n}

(D) \frac{\bar{x}+\bar{y}}{2n}

 

Answers (1)

Answer : B

\bar{x} is the mean of x_{1},x_{2},.....,x_{n} then

\bar{x}=\frac{x_{1}+x_{2}+.....+x_{n}}{n}

\bar{y} is the mean of y_{1},y_{2},......y_{n} then

\bar{y}=\frac{y_{1}+y_{2}+......y_{n}}{n}

\bar{z} is the mean of x_{1},x_{2},.......x_{n},y_{1},y_{2}............,y_{n}

 \bar{z} = \frac{x_{1}+x_{2}+........+x_{n}+y_{1}+y_{2}+.....y_{n}}{2n}

\bar{z} = \frac{1}{2}\left ( \frac{x_{1}+x_{2}+....+x_{n}+y_{1}+y_{2}+.......y_{n}}{n} \right )

\bar{z} = \frac{1}{2}\left ( \frac{x_{1}+x_{2}+....+x_{n}}{n} +\frac{y_{1}+y_{2}+.......y_{n}}{n}\right )

\bar{z} = \frac{\bar{x}+\bar{y}}{2}

Hence, the value of \bar{z} is \frac{\bar{x}+\bar{y}}{2}

Therefore option (B) is correct.

 

Posted by

infoexpert23

View full answer