Get Answers to all your Questions

header-bg qa

Explain solution for RD Sharma Class 12 Chapter Functions Exercise 2.3 Question 9 maths textbook solution.

Answers (1)

Answer :

\begin{aligned} &(f \circ g)(x)=\tan \left(\sqrt{1-x^{2}}\right) \\ &(g \circ f)(x)=\tan \left(\sqrt{1-x^{2}}\right) \end{aligned}

Given : Here given that

            \begin{aligned} &f:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow R \text { and }\\ &g:[-1,1] \rightarrow R \text { defined as } f(x)=\tan x \text { and } g(x)=\sqrt{1-x^{2}} \end{aligned}

Hint : Since \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), y \in(-\infty, \infty)

         Range of f\; \; \subset domain of g = \left [ -1,1 \right ]

Solution :

First, we compute (f\; \circ \; g)(x)

We know that

               Let y=f(x)

\begin{array}{ll} \Rightarrow \quad y=\tan \tan x \\ \Rightarrow \quad x=y ; x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\ \Rightarrow \quad(f \circ g)(x)=f(g(x)) \\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \;=f\left(\sqrt{1-x^{2}}\right) \\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; =\tan \left(\sqrt{1-x^{2}}\right) \end{array}

Again we will compute (g\; \circ \; f)(x)

\begin{aligned} (g \circ f)(x) &=g(f(x)) \\ &=g(\tan x) \\ g \circ f(x)=& \tan \left(\sqrt{1-x^{2}}\right) \end{aligned}

Posted by

infoexpert23

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads