Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma Maths Class 12 Chapter 6 Adjoint and Inverse of Matrices Excercise 6.1 Question 8 Subquestion (iii)

Answers (1)

Answer:

A^{-1}=\frac{1}{4}\left[\begin{array}{ccc} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{array}\right]

Hint:

Here, we use basic concept of determinant and inverse of matrix.

Given:

A=\left[\begin{array}{ccc} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{array}\right]                                     

Solution:

\begin{aligned} &A^{-1}=\frac{1}{|A|} \times \operatorname{Adj}(A) \\ &|A|=2\left|\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array}\right|-(-1)\left|\begin{array}{cc} -1 & -1 \\ 1 & 2 \end{array}\right|+1\left|\begin{array}{cc} -1 & 2 \\ 1 & -1 \end{array}\right| \\ &=2(4-1)+1(-2+1)+1(1-2) \\ &=6-2 \\ &=4 \neq 0 \end{aligned}  

Hence A^{-1}  exist

Cofactor of A

\begin{aligned} &C_{11}=3, C_{21}=1, C_{31}=-1 \\ &C_{12}=3, C_{22}=3, C_{32}=1 \\ &C_{13}=-1, C_{23}=1, C_{33}=3 \end{aligned}

\begin{aligned} &\operatorname{Adj}(A)=C_{i j}^{T} \\ &\operatorname{Adj}(A)=\left[\begin{array}{ccc} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{array}\right]^{T}=\left[\begin{array}{ccc} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{array}\right] \end{aligned}

\begin{aligned} &A^{-1}=\frac{1}{|A|} \times \operatorname{Adj}(A) \\ &=\frac{1}{4}\left[\begin{array}{ccc} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{array}\right] \end{aligned}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads