Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 Chapter 6 Adjoint and Inverse of a Matrix exercise 6.1 question 1 Subquestion (iv)

Answers (1)

Answer:

Adj\left ( A \right )=\left|\begin{array}{cc} 1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1 \end{array}\right|

Hint:

Here, we use basic concept of determinant.

Given:

A=\left|\begin{array}{cc} 1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1 \end{array}\right|           

Solution:

Let’s find |A|
|A|=\left|\begin{array}{cc} 1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1 \end{array}\right|

\begin{aligned} &|A|=1-\left[\left(-\tan \frac{\alpha}{2}\right)\left(\tan \frac{\alpha}{2}\right)\right] \\ &|A|=1+\tan ^{2} \frac{\alpha}{2} \\ &|A|=\sec ^{2} \frac{\alpha}{2} \end{aligned}

Let’s find cofactor

C_{11}=1, C_{12}=\tan \frac{\alpha}{2}, C_{21}=-\tan \frac{\alpha}{2}, C_{22}=1

C_{ij}=\left[\begin{array}{cc} 1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1 \end{array}\right]

Take transpose of C_{ij}

\operatorname{Adj}(A)=\left[\begin{array}{cc} 1 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 1 \end{array}\right]

Let’s prove below

\begin{aligned} &\operatorname{Adj}(A) \times A=|A| I=A \times \operatorname{Adj}(A) \\\\ &\operatorname{Adj}(A) \times A=\left[\begin{array}{cc} 1 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 1 \end{array}\right] \times\left[\begin{array}{cc} 1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1 \end{array}\right] \end{aligned}

\begin{aligned} &=\left[\begin{array}{cc} 1+\tan ^{2} \frac{\alpha}{2} & \tan \frac{\alpha}{2}-\tan \frac{\alpha}{2}\\ \\ \tan \frac{\alpha}{2}-\tan \frac{\alpha}{2} & 1+\tan ^{2} \frac{\alpha}{2} \end{array}\right] \\ \\&=\left[\begin{array}{cc} \sec ^{2} \frac{\alpha}{2} & 0 \\ 0 & \sec ^{2} \frac{\alpha}{2} \end{array}\right] \end{aligned}                                                    (1)

\begin{aligned} &|A| I=\sec ^{2} \frac{\alpha}{2} \times\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right] \\\\ &=\left[\begin{array}{cc} \sec ^{2} \frac{\alpha}{2} & 0 \\ 0 & \sec ^{2} \frac{\alpha}{2} \end{array}\right] \end{aligned}                                                                        (2)

A \times A d j(A)=\left[\begin{array}{cc} 1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1 \end{array}\right] \times\left[\begin{array}{cc} 1 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 1 \end{array}\right]

\begin{aligned} &=\left[\begin{array}{cc} 1+\tan ^{2} \frac{\alpha}{2} & 0 \\ 0 & 1+\tan ^{2} \frac{\alpha}{2} \end{array}\right] \\\\ &=\left[\begin{array}{cc} \sec ^{2} \frac{\alpha}{2} & 0 \\ 0 & \sec ^{2} \frac{\alpha}{2} \end{array}\right] \end{aligned}                                                                 (3)

From equation (1), (2) and 3

\operatorname{Adj}(A) \times A=|A| \times I=A \times \operatorname{Adj}(A)

Hence proved

 

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads