Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter 6 Adjoint and Inverse of a Matrix Exercise 6.1 Question 1 Subquestion (iii) Maths Textbook Solution.

Answers (1)

Answer:

\left[\begin{array}{cc} \cos \alpha & -\sin \alpha \\ -\sin \alpha & \cos \alpha \end{array}\right]

Hint:

Here, we use basic concept of determinant.

Given:

A= \left[\begin{array}{cc} \cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha \end{array}\right]   

Solution:

Let’s find  \left | A \right |

|A|=\cos ^{2} \alpha-\sin ^{2} \alpha=\cos 2 \alpha

Let’s find cofactor

\begin{aligned} &C_{11}=\cos \alpha, C_{12}=-\sin \alpha, C_{21}=-\sin \alpha, C_{22}=\cos \alpha \\ &C_{i j}=\left[\begin{array}{cc} \cos \alpha & -\sin \alpha \\ -\sin \alpha & \cos \alpha \end{array}\right] \end{aligned}

Let’s transpose  C_{ij}

Adj(A)= \left[\begin{array}{cc} \cos \alpha & -\sin \alpha \\ -\sin \alpha & \cos \alpha \end{array}\right]

Let’s prove below

\begin{aligned} &\operatorname{Adj}(A) \times A=|A| \times A=A \times \operatorname{Adj}(A) \\ &\operatorname{Adj}(A) \times A=\left[\begin{array}{cc} \cos \alpha & -\sin \alpha \\ -\sin \alpha & \cos \alpha \end{array}\right] \times\left[\begin{array}{cc} \cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha \end{array}\right] \end{aligned}
=\left[\begin{array}{cc} \cos ^{2} \alpha-\sin ^{2} \alpha & \cos \alpha \sin \alpha-\cos \alpha \sin \alpha \\ -\sin \alpha \cos \alpha+\cos \alpha \sin \alpha & \cos ^{2} \alpha-\sin ^{2} \alpha \end{array}\right]

= \left[\begin{array}{cc} \cos 2\alpha &0 \\0 & \cos2 \alpha \end{array}\right]                                    (1)

\left | A \right |I= \cos2 \alpha\times \left[\begin{array}{cc} 1 &0 \\ 0 & 1\end{array}\right]

= \left[\begin{array}{cc} \cos 2\alpha &0 \\0 & \cos2 \alpha \end{array}\right]                                    (2)

\begin{aligned} &A \times \operatorname{Adj}(A)=\left[\begin{array}{cc} \cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha \end{array}\right] \times\left[\begin{array}{cc} \cos \alpha & -\sin \alpha \\ -\sin \alpha & \cos \alpha \end{array}\right] \\ &=\left[\begin{array}{cc} \cos ^{2} \alpha-\sin ^{2} \alpha & 0 \\ 0 & \cos ^{2} \alpha-\sin ^{2} \alpha \end{array}\right] \end{aligned}

= \left[\begin{array}{cc} \cos 2\alpha &0 \\0 & \cos2 \alpha \end{array}\right]                                    (3)

From equation (1), (2) and (3)

A \times \operatorname{Adj}(A)=|A| I=\operatorname{Adj}(A) \times A

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads