Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Function Exercise 2.4 Question 12 Maths Textbook Solution.

Answers (1)

Answer: 

                \left ( gof \right )^{-1}=f^{-1}og^{-1}

Given:

                f:Q\rightarrow Q,g:Q\rightarrow Q defined by f\left ( x \right )=2x,g\left ( x \right )=x+2.

Hint:

                Bijective function should be fulfil the injective and surjective function.

Solution:

x,y be two elements of domain\left ( Q \right ), such

                \! \! \! \! \! \! \! \! \! f\left (x \right )=f\left ( y \right )\\\\2x=2y\\\\x=y

                f is one-one.

Let y be in the co-domain\left ( Q \right ), such that

                f\left ( x \right )=y

                2x =y

                x=\frac{y}{2}\epsilon \: Q.

f is onto.

So, f is a bijection and hence, it’s invertible
Let          f^{-1}\left ( x \right )=y                                                                                                                                           …(i)                                                                       

       \\\\x=f\left ( y \right )\\\\y=\frac{x}{2}\\\\f^{-1}\left ( x \right )=\frac{x}{2}                                                                                                                                                                                                             Injectivity of g

Let  x,y be two elements of domain\left ( Q \right ).

                \! \! \! \! \! \! \! \! g\left ( x \right )=g\left ( y \right )\\\\x+2=y+2\\\\x=y

           So, g is one-one.

Subjectivity of g:

Let y be in the co-domain\left ( Q \right ), such that g\left ( x \right )=y.

                x+2=y

                x=2-y\: \epsilon \: (domain)

g is onto.

So, g is a bijection, hence it’s invertible.

Let          g^{-1}\left ( x \right )=y

                x=g\left ( y \right )                                                                                                                                                         …(ii)

                x=y+2

                y=x-2

So,          g^{-1}\left ( x \right )=x-2                                                                                                                                   [from (ii)]

\left ( gof \right )^{-1}=f^{-1}og^{-1}.

f\left ( x \right )=2x,g\left ( x \right )=x+2,f^{-1}\left ( x \right )=\frac{x}{2},g^{-1}\left ( x \right )=x-2

\left ( f^{-1} og^{-1}\right )\left ( x \right )=f^{-1}\left ( x-2 \right )                                                   \left [ \because \left ( f^{-1} og^{-1}\right )\left ( x \right )=f^{-1}\left ( g^{-1}\left ( x \right ) \right ) \right ]

\left ( f^{-1}og^{-1} \right )\left ( x \right )=f^{-1}\left ( \frac{x-2}{2} \right )                                                                                                              …(iii)

\left ( gof \right )\left ( x \right )=g\left ( f\left ( x \right ) \right )

                   =g\left (2 x \right )

                   =2x+1

Let          \left ( gof \right )\left ( x \right )=y                                                                                                                                 …(vi)

                x=\left ( gof \right )\left ( y \right )

                x=2y+2

                y=\frac{x-2}{2}

                \left ( gof \right )^{-1}=f^{-1}og^{-1}.

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads