Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Function Exercise 2.4 Question 19 Maths Textbook Solution.

Answers (1)

Answer:

                s=\left \{ 0,1 \right \}

Given:

                f\left ( x \right )=\left ( x+1 \right )^{2}-1,x\geq -1

Hint:

Bijection function should fulfil the injection and surjection condition.

Solution:

Injectivity: let x and y\: \epsilon \: \left [ -1,\infty \right ), such that

                f\left ( x \right )=f\left ( y \right )

                \left ( x+1 \right )^{2}-1=\left ( y+1 \right )^{2}-1

                \left ( x+1 \right )^{2}=\left ( y+1 \right )^{2}

                x+1 = y+1

                x = y

So, fis an injection.

Surjectivity: lety\: \epsilon \: \left [ -1,\infty \right ) , then

                f\left ( x \right )=y

                \left ( x+1 \right )^{2}-1=y

                x+1 =\sqrt{y+1}

                x =\sqrt{y+1}-1

                x =\sqrt{y+1}-1  is real for all y\geq -1

         \Rightarrow f is a surjection.

f is a bijection. Hence, f is invertible.

Let         

                f^{-1}\left ( x \right )= y

                f\left ( y \right )= x

                \left ( y+1 \right )^{2}-1= x               

                y\pm \sqrt{x+1}-1= f^{-1}\left ( x \right )

                f^{-1}\left ( x \right )=\pm \sqrt{x+1}-1

                f\left ( x \right )=f^{-1}\left ( x \right )

                \left (x +1 \right )^{2}-1\pm \sqrt{x+1}-1

                \left (x +1 \right )^{2}\pm \sqrt{x+1}

Squaring on both sides

                \left ( x+1 \right )^{4}=x+1

                \left ( x+1 \right )\left [ \left ( x+1 \right ) ^{3}-1\right ]=0

                \left ( x+1 \right )=0\: or\: \left ( x+1 \right ) ^{3}-1=0

                x=-1\: or\: \left ( x+1 \right ) ^{3}=1

                \left ( x+1 \right ) ^{3}=1

               x+1 =1

              x=0

              x=-1 \: or\: 0 or

           s=\left \{ 0,1 \right \}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads