Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma Maths Class 12 Chapter Functions Exercise 2.2 Question 3.

Answers (1)

Answer : g\; o\; f = \left \{ \left ( 1,2 \right ),\left ( 4,-4 \right ),\left ( 9,-6 \right ),\left ( 16,8 \right ) \right \}

Hint : The set which contains all the elements of all the ordered pairs of relation R is known as the domain of the relation. The set which contains all the second element is known as the range of the relation.

Given : f=\left \{ (1,-1),(4,-2),(9,-3),(16,4) \right \}

             g=\left \{ (-1,-2),(-2,-4),(-3,-6),(4,8) \right \}

Prove : g\; o\; f is defined while f\; o\; g is not defined.

Solution

Now,  Domain of f=\left \{ 1,4,9,16 \right \}

           Range of f=\left \{ -1,-2,-3,4 \right \}

           Domain of g=\left \{ -1,-2,-3,4 \right \}

            Range of g=\left \{ -2,-4,-6,8 \right \}

Clearly, Range of f = domain of g

           \therefore \; g\; o\; f \; \text {is defind}.

But       Range of g\neq domain of f

          \therefore \; f\; o\; g \; \text {is not defind}.

Now, g\; o\; f(1)=g(-1)=-2

         g\; o\; f(4)=g(-2)=-4

         g\; o\; f(9)=g(-3)=-6

         g\; o\; f(16)=g(4)=8

        g\; o\; f= \left \{ (1,-2),(4,-4),(9,-6),(16,8) \right \}

Hence proved, g\; o\; f is defined but f\; o\; g is mot defined.

g\; o\; f = \left \{ \left ( 1,-2 \right ),\left ( 4,-4 \right ),\left ( 9,-6 \right ),\left ( 16,8 \right ) \right \}

Posted by

infoexpert23

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads