Get Answers to all your Questions

header-bg qa

All the vertices of a rhombus lie on a circle. Find the area of the rhombus, if area of the circle is 1256 cm2. (Use \pi = 3.14).

Answers (1)

Answer [800 cm2]

Solution

 

Given that area of circle =1256cm2
 \\\pi r^{2}=1256\\\\ r^{2}=\frac{1256}{314}\times 100\\\\ r^{2}=400 \; \; \; \; \; \; \; \; \left ( \pi=3.14 \right )\\\\ r=\sqrt{400}\\\\ r=20cm

Diameter of circle = 40 cm

As we know that the diameter of circle is equal

Diagonals of rhombus = Diameters of circle = 40 cm

Each diagonals of rhombus = 40 cm

Area of rhombus =\frac{1}{2}  \times product of digonals

                            = \frac{1}{2}  \times 40 \times 40

                            = 800cm2

Hence required area of rhombus is =800cm2

           

Posted by

infoexpert24

View full answer