Get Answers to all your Questions

header-bg qa

If the points A (1, –2), B (2, 3) C (a, 2) and D (– 4, –3) form a parallelogram, find the value of a and height of the parallelogram taking AB as base.

Answers (1)

Solution
  

We know that diagonals bisect each other
Hence, mid-point of AC = mid-point of BD
\left ( \frac{1+a}{2},\frac{-2+2}{2} \right )= \left ( \frac{2-4}{2},\frac{3-3}{2} \right )
\left ( \frac{1+a}{2},0 \right )= \left ( -1,0 \right )
\frac{1+a}{2}= -1
1 + a = –2
a = –3
C(–3, 2)
Area \, of \, \triangle ABC = \frac{1}{2}\left [ x_{1} \left ( y_{2} -y_{3}\right )+x_{2} \left ( y_{3} -y_{1}\right )+x_{3} \left ( y_{1} -y_{2}\right )\right ]
   = \frac{1}{2}\left [ 1\left ( 3-2 \right ) +2\left ( 2+2 \right )+\left ( -3 \right )\left ( -2-3 \right )\right ]
  = \frac{1}{2}\left [ 1+2\left ( 4 \right )+15\right ]
 = \frac{1}{2}\left [ 24 \right ]= 12sq\cdot units 
Area of parallelogram = 2 × Area of \triangleABC
Area of parallelogram = 2 × 12 = 24sq.units
Length\, of\, AB= \sqrt{\left ( x_{2}-x_{1} \right )^{2}+\left ( y_{2}-y_{1} \right )^{2}}
= \sqrt{\left ( 2-1 \right )^{2}+\left ( 3+2 \right )^{2}}
AB=\sqrt{1+25}= \sqrt{26}units
Area of parallelogram = Base × height
\frac{24}{Base}= Height
Height= \frac{24}{AB}
Height= \frac{24}{\sqrt{26}}\times\frac{\sqrt{26}}{\sqrt{26}}
                 \frac{24\sqrt{26}}{13}units 

Posted by

infoexpert27

View full answer