Get Answers to all your Questions

header-bg qa

The point which divides the line segment joining the points (7, –6) and (3, 4) in ratio 1: 2 internally lies in the

(A) I quadrant

(B) II quadrant

(C) III quadrant

(D) IV quadrant

Answers (1)

Here the points are A(7, -6), B(3, 4) and the ratio is 1: 2.

(x\textsubscript{1}, y\textsubscript{1}) = (7, -6) (x\textsubscript{2}, y\textsubscript{2}) = (3, 4)\\

Let point which divides the line is (x, y)

\\ (\mathrm{x}, \mathrm{y})=\left(\frac{\mathrm{m}_{1} \mathrm{x}_{2}+\mathrm{m}_{2} \mathrm{x}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}, \frac{\mathrm{m}_{1} \mathrm{y}_{2}+\mathrm{m}_{2} \mathrm{y}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\right) \\ (\mathrm{x}, \mathrm{y})=\left(\frac{1 \times 3+2 \times 7}{1+2}, \frac{14+2 \times-6}{1+2}\right) \\ (\mathrm{x}, \mathrm{y})=\left(\frac{3+14}{3}, \frac{4-12}{3}\right) \\ (\mathrm{x}, \mathrm{y})=\left(\frac{17}{3}, \frac{-8}{3}\right)

Here x is positive and y is negative. 

Hence the point lies in IV quadrant. 

Posted by

infoexpert21

View full answer