Get Answers to all your Questions

header-bg qa

(i) The points A(x1, y1), B(x2, y2) and C(x3, y3) are the vertices of \triangleABC.The median from A meets BC at D. Find the coordinates of the point D.
(ii) The points A(x1, y1), B(x2, y2) and C(x3, y3) are the vertices of \triangleABC.Find the coordinates of the point P on AD such that AP : PD = 2 : 1
(iii) The points A(x1, y1)B(x2, y2)and C(x3, y3)are the vertices of \triangleABC.Find the coordinates of points Q and R on medians BE and CF, respectively such that BQ : QE = 2 : 1 and CR : RF = 2 : 1
(iv) The points A(x1, y1),B(x2, y2) and C(x3, y3) are the vertices of \triangleABC.What are the coordinates of the centroid of the triangle ABC?

Answers (1)

(i) Solution
  
D is the mid-point of BC.
Mid-point \,formula = \left ( \frac{x_{1}+x_{2}}{2} ,\frac{y_{1}+y_{2}}{2}\right )

Coordinates of D\left ( x,y \right )= \left ( \frac{x_{2}+x_{3}}{2} ,\frac{y_{2}+y_{3}}{2}\right ) (By midpoint formula)
(ii) Solution

Section \, formula= \left ( \frac{m_{1}x_{2}+m_{2}x_{1}}{m_{1}+m_{2}},\frac{m_{1}y_{2}+m_{2}y_{1}}{m_{1}+m_{2}} \right )
D= \left ( \frac{x_{2}+x_{3}}{2},\frac{y_{2}+y_{3}}{2} \right )
(By Midpoint formula)
P= \left ( \frac{m_{1}x_{2}+m_{2}x_{1}}{m_{1}+m_{2}},\frac{m_{1}y_{2}+m_{2}y_{1}}{m_{1}+m_{2}} \right )
P= \left ( \frac{2\times \frac{\left ( x_{2}+x_{3} \right )}{2}+1\times x_{1}}{2+1}, \frac{2\times \frac{\left ( y_{2}+y_{3} \right )}{2}+1\times x_{1}}{2+1} \right )
P= \left ( \frac{x_{1}+x_{2}+x_{3}}{3},\frac{y_{1}+y_{2}+y_{3}}{3} \right )
(iii) Solution
                        

E is mid-point of AC
E = \left ( \frac{x_{1}+x_{3}}{2} ,\frac{y_{1}+y_{3}}{2}\right )
Q divides BF at 2 : 1
Q= \left ( \frac{2\times \frac{\left ( x_{1}+x_{3} \right )}{2}+1\times x_{2}}{2+1}, \frac{2\times \frac{\left ( y_{1}+y_{3} \right )}{2}+1\times y_{2}}{2+1} \right )
Q= \left ( \frac{x_{1}+x_{2}+x_{3}}{3},\frac{y_{1}+y_{2}+y_{3}}{3} \right )

R divides CF at 2 : 1
R= \left ( \frac{2\times \frac{\left ( x_{1}+x_{2} \right )}{2}+1\times x_{3}}{2+1}, \frac{2\times \frac{\left ( y_{1}+y_{2} \right )}{2}+1\times y_{3}}{2+1} \right )
R= \left ( \frac{x_{1}+x_{2}+x_{3}}{3},\frac{y_{1}+y_{2}+y_{3}}{3} \right )
(iv) solution
    

co-ordinate\, of\,centroid= \left ( \frac{Sum\,of\,all\,coordinates \, of\,all\,vertices\,}{3}, \frac{Sum\,of\,all\,coordinates \, of\,all\,vertices\,}{3}\right )
Centroid:
The centroid is the centre point of the triangle which is the intersection of the medians of a triangle.
\triangle ABC\, coordinates\, of\, centroid= \left ( \frac{x_{1}+x_{2}+x_{3}}{3},\frac{y_{1}+y_{2}+y_{3}}{3} \right )
 

Posted by

infoexpert27

View full answer