Get Answers to all your Questions

header-bg qa

The points A(x1, y1), B(x2, y2) and C(x3, y3) are the vertices of \triangleABC.

(i) The median from A meets BC at D. Find the coordinates of the point D.
(ii) Find the coordinates of the point P on AD such that AP : PD = 2 : 1
(iii) Find the coordinates of points Q and R on medians BE and CF, respectively such that BQ : QE = 2 : 1 and CR : RF = 2 : 1
(iv) What are the coordinates of the centroid of the triangle ABC?

Answers (1)

best_answer

(i) Solution
  
D is the mid-point of BC.
Mid-point \,formula = \left ( \frac{x_{1}+x_{2}}{2} ,\frac{y_{1}+y_{2}}{2}\right )

Coordinates of D\left ( x,y \right )= \left ( \frac{x_{2}+x_{3}}{2} ,\frac{y_{2}+y_{3}}{2}\right ) (By midpoint formula)
(ii) Solution

Section \, formula= \left ( \frac{m_{1}x_{2}+m_{2}x_{1}}{m_{1}+m_{2}},\frac{m_{1}y_{2}+m_{2}y_{1}}{m_{1}+m_{2}} \right )
D= \left ( \frac{x_{2}+x_{3}}{2},\frac{y_{2}+y_{3}}{2} \right )
(By Midpoint formula)
P= \left ( \frac{m_{1}x_{2}+m_{2}x_{1}}{m_{1}+m_{2}},\frac{m_{1}y_{2}+m_{2}y_{1}}{m_{1}+m_{2}} \right )
P= \left ( \frac{2\times \frac{\left ( x_{2}+x_{3} \right )}{2}+1\times x_{1}}{2+1}, \frac{2\times \frac{\left ( y_{2}+y_{3} \right )}{2}+1\times x_{1}}{2+1} \right )
P= \left ( \frac{x_{1}+x_{2}+x_{3}}{3},\frac{y_{1}+y_{2}+y_{3}}{3} \right )
(iii) Solution
                        

E is mid-point of AC
E = \left ( \frac{x_{1}+x_{3}}{2} ,\frac{y_{1}+y_{3}}{2}\right )
Q divides BF at 2 : 1
Q= \left ( \frac{2\times \frac{\left ( x_{1}+x_{3} \right )}{2}+1\times x_{2}}{2+1}, \frac{2\times \frac{\left ( y_{1}+y_{3} \right )}{2}+1\times y_{2}}{2+1} \right )
Q= \left ( \frac{x_{1}+x_{2}+x_{3}}{3},\frac{y_{1}+y_{2}+y_{3}}{3} \right )

R divides CF at 2 : 1
R= \left ( \frac{2\times \frac{\left ( x_{1}+x_{2} \right )}{2}+1\times x_{3}}{2+1}, \frac{2\times \frac{\left ( y_{1}+y_{2} \right )}{2}+1\times y_{3}}{2+1} \right )
R= \left ( \frac{x_{1}+x_{2}+x_{3}}{3},\frac{y_{1}+y_{2}+y_{3}}{3} \right )
(iv) solution
    

co-ordinate\, of\,centroid= \left ( \frac{Sum\,of\,all\,coordinates \, of\,all\,vertices\,}{3}, \frac{Sum\,of\,all\,coordinates \, of\,all\,vertices\,}{3}\right )
Centroid:
The centroid is the centre point of the triangle which is the intersection of the medians of a triangle.
\triangle ABC\, coordinates\, of\, centroid= \left ( \frac{x_{1}+x_{2}+x_{3}}{3},\frac{y_{1}+y_{2}+y_{3}}{3} \right )
 

Posted by

infoexpert27

View full answer