The mean of the following frequency distribution is 50, but the frequencies f1 and f2 in classes 20-40 and 60-80, respectively are not known. Find these frequencies, if the sum of all the frequencies is 120.
Class | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 |
Frequency | 17 | fi | 32 | f2 | 19 |
Solution.
Class | (fi) | xi | fi | |
0-20 | 17 | 10 | -2 | -34 |
20-40 | f1 | 30 | -1 | -f1 |
40-60 | 32 | 50=a | 0 | 0 |
60-80 | f2 | 70 | 1 | f2 |
80-100 | 19 | 90 | 2 | 38 |
Sum of all frequencies = 120
68 + f1 + f2 = 120
f1 + f2 = 52 …(1)
a = 50, h = 20
mean =
50= 50 +
0= (4 + f2 – f1)
–f2 + f1 = 4 …(2)
add (1) and (2) we get
2f1 = 56
Put f1 = 28 in equation (1)
f2 = 52 – 28