The value of the λ, if the lines (2x + 3y + 4) + λ (6x – y + 12) = 0 are
Column C1 | Column C2 |
a) parallel to y-axis is | i) |
b) perpendicular to 7x+y-4=0 | ii) |
c) Passes through (1,2) is | iii) |
d) parallel to x-axis is | iv) |
a ) Given equation is (2x+3y+4)+ λ(6x-y+12)=0
2x+3y+4+6λx-λy+12λ=0
(2+6λ)x+(3-λ)y+4+12λ=0…. (i)
If equation i is parallel to y-axis, then 3-λ=0
λ=3
Hence, iv.
b) Given equation is 2x+3y+4+λ6x-y+12=0
2x+3y+4+6λx-λy+12λ=0
(3-λ)y= -4-12λ-(2+6λ)x
Since, the above equation is in y=mx+b form
So the slope of equation (i) is
Now the second equation is 7x+y-4=0…..(ii)
y=-7x+4
So, the slope of equation (ii) is m2=-7
Now equation i is perpendicular to equation (ii)
m1m2=-1
(2+6λ)*7=-(3-λ)
On solving we get λ=-17/41
Hence, (b)-(iii)
c) Given equation is (2x+3y+4)+λ(6x-y+12)=0
If the above equation passes through the point (1,2) then [2*1+3*2+4]+λ[6*1-2+12]=0
2+6+4+λ(6+10)=0
12+16λ=0
12=-16λ
λ=-12/16=-3/4
Hence, (c)-(i)
d) Given equation is (2x+3y+4)+λ(6x-y+12)=0
2x+3y+4+6λx-λy+12λ=0
(2+6λ)x+(3-λ)y+4+12λ=0…..(i)
If equation (i) is parallel to x axis, then 2+6λ=0 6λ=-2
λ=-1/3
(d)-(ii)