Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 15 Tangents and Normals Exercise Multiple Choice Questions Question 12 maths Textbook Solution.

Answers (1)

Answer:

              \left ( b \right )\frac{6}{7}

Hint:

        Use differentiation

Given:

            x=t^{2}+3t-8

            y=2t^{2}+2t-5

Solution:

Given curve are x=t^{2}+3t-8            (1)

And y=2t^{2}+2t-5                           (2)

At \left ( 2,-1 \right )

From (1) t^{2}+3t-10=0

\Rightarrow t=2 \; or\: t=-5

From (2) 2t^{2}-2t-4=0

\Rightarrow t^{2}-t-2=0

\Rightarrow t=2 \: \: or \: \: t=-1

From both the solution, we get t=2

Differentiating both the equation w.r.t t, we get

\frac{dx}{dt}=2t+3                                                    (3)

\frac{dy}{dt}=4t-2                                                        (4)

Now,\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}

From (3) and (4) we get

\frac{4t-2}{2t+3}

\therefore \frac{dy}{dx}=\frac{4t-2}{2t+3}     Is the slope of the tangent to the given curve.

\left|\frac{d y}{d x}\right|_{(2,-1)}=\left|\frac{4 t-2}{2 t+3}\right|_{t-2}=\frac{8-2}{4+3}=\frac{6}{7}         Is the slope of the tangent to the given curve at (2,-1)

 

 

                

Posted by

infoexpert23

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads