Get Answers to all your Questions

header-bg qa

Explain solution rd sharma class 12 chapter 9 Differentiability exercise Multiple choice question, question 26

Answers (1)

(a)

HINTS: understand the definition of continuity and differentiability.

GIVEN: f(x)=\left\{\begin{array}{cc} 1 & x \leq-1 \\ |x| & -1<x<1 \\ 0 & x \geq 1 \end{array}\right.

SOLUTION:

At x=-1

\begin{aligned} &\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1} 1=1 \\ &\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1}|x|=\lim _{x \rightarrow-1}-x=1 \end{aligned}

So f(x) is continuous at x=-1

Now at x=1

\begin{aligned} &\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow-1} x=1 \\ &\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow 1} 0=0 \\ \end{aligned}

As,

\begin{aligned} &\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x) \end{aligned}

f(x) is not continuous at x=+1.Hence not differentiable at x=1

Posted by

Info Expert 29

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads