Get Answers to all your Questions

header-bg qa

Please Solve R.D.Sharma class 12 Chapter 9 Differentiability Exercise 9.2 Question 4 Maths textbook Solution.

Answers (1)

Answer:\Phi =9

Hint: Differentiate f(x) to find f `(x). Put x = 5 in f `(x). To find the value of \Phi, equate R.H.S of f ` (5) from given and calculate.

Given: f\left ( x \right )=\Phi x^{2}+7x-4

Solution:

Differentiating f(x) w.r.t x then,

\Rightarrow \frac{d}{d x}\{\mathrm{f}(\mathrm{x})\}=\frac{d}{d x}\left(\Phi \mathrm{x}^{2}+7 \mathrm{x}-4\right) \; \; \; \; \; \; \; \; \; \quad\left[\because \frac{d}{d x}\left(a x^{2}+b x+c\right)=\frac{d}{d x}\left(a x^{2}\right)+\frac{d}{d x}(b x)+\frac{d}{d x}(c)\right]

                        \begin{array}{ll} =\frac{d}{d x}\left(\Phi \mathrm{x}^{2}\right)+\frac{d}{d x}(7 \mathrm{x})+\frac{d}{d x}(-4) & {\left[\because \frac{d}{d x}(\text { constant })=0\right]} \; \; \; \\ =\Phi \frac{d}{d x}\left(\mathrm{x}^{2}\right)+7 \frac{d}{d x}(\mathrm{x})+0 & {\left[\because \frac{d}{d x}\left(a x^{n}\right)=a \frac{d}{d x}\left(x^{n}\right)\right]} \\ =\Phi\left(2 \mathrm{x}^{2-1}\right)+7\left(1 \mathrm{x}^{1-1}\right)+0 & {\left[\because \frac{d}{d x}\left(x^{n}\right)=n x^{n-1}\right]} \end{array}

                        =2\Phi x+7

\therefore f'\left ( x \right )=2\Phi\; x+7

We Know that

                   f'\left ( 5 \right )=97

                    2\: \Phi \left ( 5 \right )+7=97

                    10\: \Phi =97-7

                    10\: \Phi =90

                    \Phi =9

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads