Get Answers to all your Questions

header-bg qa

Please Solve R.D.Sharma class 12 Chapter 9 Differentiability Exercise 9.2 Question 1 Maths textbook Solution.

Answers (1)

Answer: 4

Hint:Differentiate f(x) w.r.t x. Then, put x = 2 in f `(x).

Given:f\left ( x \right )=x^{2}

Solution:

Differentiating f(x) w.r.t x then,

\Rightarrow \frac{d}{dx}\left \{ f\left ( x \right ) \right \}=\frac{d}{dx}\left ( x^{2} \right )=2x^{2-1}                                                                                                        \left [ \because \frac{d}{dx}\left ( x^{n} \right )=nx^{n-1} \right ]

\therefore f\left ( x \right )=2x                                                                                                                \left [ we\: \: can \: \: write\: f'\left ( x \right )=\frac{d}{dx}\left \{ f\left ( x \right ) \right \} \right ]

Now put x = 2 in f `(x), then

f'\left ( 2 \right )=2\left ( 2 \right )=4

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads