Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 15 Tangents and Normals Exercise Multiple Choice Questions Question 13 maths Textbook Solution.

Answers (1)

Answer:

            \left ( d \right )\left ( 1,2 \right ) And \left ( 1,-2 \right )

Hint:

        Use differentiation

Given:

            x^{2}+y^{2}-2x-3=0

Solution:

x^{2}+y^{2}-2x-3=0

Differentiate w.r.t x, we get

\begin{aligned} &2 x+2 y \frac{d y}{d x}-2=0 \\ &2 y \frac{d y}{d x}=2-2 x \\ &\frac{d y}{d x}=\frac{2(1-x)}{2 y} \\ &\frac{d y}{d x}=\frac{1-x}{y} \end{aligned}                                        (1)

If line is parallel to x-axis, angle with x-axis =\theta =0

Slope of x-axis =\tan \theta =\tan 0^{o}=0

Slope of tangent =Slope of x-axis

\frac{dy}{dx}=0

\frac{1-x}{y}=0

x=1

Find y When x=1

\begin{aligned} &x^{2}+y^{2}-2 x-3=0 \\ &(1)^{2}+(y)^{2}-2(1)-3=0 \\ &1+y^{2}-2-3=0 \\ &y=\pm 2 \end{aligned}

Hence, the points are \left ( 1,2 \right ) and \left ( 1,-2 \right )

               

 

Posted by

infoexpert23

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads