Get Answers to all your Questions

header-bg qa

Need Solution for R.D.Sharma Maths Class 12 Chapter 15 Tangents and Normals Exercise Multiple Choice Question Question 11 Maths Textbook Solution.

Answers (1)

Answer:

            \left ( b \right )x+y-1=x-y-2

Hint:

         Use slope of the tangent m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}

Given:

            y=x^{2}-3x+2

Solution:

y=x^{2}-3x+2

Let the tangent meet the x-axis at point \left ( x,o \right )

\frac{dy}{dx}=2x-3

The tangent passes through point \left ( x,o \right )

\begin{aligned} &0=x^{2}-3 x+2 \\ &(x-2)(x-1)=0 \\ &\Rightarrow x=2, x=1 \end{aligned}

Case 1

When x=2

Slope of tangent \frac{dy}{dx}|\left ( _{2,0} \right )=2\left ( 2 \right )-3=4-3=1

\therefore \left ( x_{1},y_{1} \right )=\left ( 2,0 \right )

Equation of tangent

\begin{aligned} &y-y_{1}=m\left(x-x_{1}\right) \\ &y-0=1(x-2) \\ &x-y-2=0 \end{aligned}

Case 2

When x=1

Slope of tangent

\frac{dy}{dx}|\left ( 2,0 \right )=2-3=-1

\left ( x_{1}-y_{1} \right )=\left ( 1,0 \right )

Equation of tangent

\begin{aligned} &y-y_{1}=m\left(x-x_{1}\right) \\ &y-0=-1(x-1) \\ &\Rightarrow x+y-1=0 \end{aligned}

                

Posted by

infoexpert23

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads