Get Answers to all your Questions

header-bg qa

If in two triangles ABC and PQR, \frac{AB}{QR}=\frac{BC}{PR}=\frac{CA}{PQ}, then

(a) \Delta PQR\sim \Delta CAB

(b) \Delta PQR\sim \Delta ABC

(c) \Delta CBA\sim \Delta PQR

(d) \Delta BCA\sim \Delta PQR

Answers (1)

Answer: [A]

In \Delta ABC and \Delta PQR

\frac{AB}{QR}=\frac{BC}{PR}=\frac{CA}{PQ}\; \; \; \; \; \; \; .......(1)

(A) If \Delta PQR \sim \Delta CAB

Here; \frac{CA}{PQ}=\frac{CB}{PR}=\frac{AB}{PQ}

It matches equation (1) Hence option A is correct.

(B) If \Delta PQR \sim \Delta ABC

Here; \frac{AB}{PQ}=\frac{BC}{QR}=\frac{AC}{PR}

It does not match equation (1)

Therefore option (B) is not correct.

(c) \Delta CBA\sim \Delta PQR

Here; \frac{CB}{PQ}=\frac{BA}{QR}=\frac{CA}{PR}

It does not match equation (1) Hence option (C) is not correct

(D) \Delta BCA \sim \Delta PQR

Here; \frac{BC}{PQ}=\frac{CA}{QR}=\frac{BA}{PR}

It does not match the equation (1). Hence option (D) is not correct.

Posted by

infoexpert23

View full answer