Get Answers to all your Questions

header-bg qa

Prove that the area of the semicircle drawn on the hypotenuse of a right angled triangle is equal to the sum of the areas of the semicircles drawn on the other two sides of the triangle.

Answers (1)

Let PQR is a right angle triangle which is right angle at point Q.

            PQ = b, QR = a

Three semicircles are drawn on the sides of \Delta PQR having diameters PQ, QR and PR respectively.

Let x_{1}, x_{2} and x_{3} are the areas of semicircles respectively.

To prove:- x_{3}=x_{1}+x_{2}

Proof: In \Delta PQR use Pythagoras theorem we get

PR^{2}=PQ^{2}+QR^{2}

PR^{2}=a^{2}+b^{2}

PR^{2}=\sqrt{a^{2}+b^{2}}

Now area of semi-circle drawn on side PR is

x_{3}=\frac{\pi }{2}\left ( \frac{PR}{2} \right )^{2}                      \left [ \therefore \text {area of semicircle=}\frac{\pi r^{2}}{2} \right ]

=\frac{\pi}{2}\left ( \frac{\sqrt{a^{2}+b^{2}}}{2} \right )^{2}                 \left ( \therefore PR=\sqrt{a^{2}+b^{2}} \right )

=\frac{\pi}{2}\times\frac{\left ( a^{2}+b^{2} \right )}{4}

x_{3}=\frac{\pi}{8}\left ( a^{2}+b^{2} \right )

area of semi-circle drawn a side QR is

x_{2}=\frac{\pi }{2}\left ( \frac{QR}{2} \right )^{2}

=\frac{\pi }{2}\left ( \frac{a}{2} \right )^{2}

=\frac{\pi}{2}\times \frac{a^{2}}{4}

x_{2}=\frac{\pi}{8}a^{2}\; \; \; \; \; \; \; ....(2)

area of semicircle drawn on side PQ is

x_{1}=\frac{\pi }{2}\left ( \frac{PQ}{2} \right )^{2}

x_{1}=\frac{\pi }{2}\left ( \frac{b^{2}}{4} \right )\Rightarrow \frac{\pi}{8}b^{2}\; \; \; \; \; \; \; \; ....(3)

add equation (2) and (3) we get

x_{2}+x_{1}=\frac{\pi }{8}a^{2}+\frac{\pi}{8}b^{2}

x_{2}+x_{1}=\frac{\pi }{8}\left ( a^{2}+b^{2} \right )=x_{3}

Hence x_{2}+x_{1}=x_{3}

Hence proved

Posted by

infoexpert23

View full answer