Get Answers to all your Questions

header-bg qa

In Fig., \angle BAC=90^{o} and AD\perp BC. Then,

(a) BD.CD=BC^{2}

(b) AB.AC=BC^{2}

(c) BD.CD=AD^{2}

(d) AB.AC=AD^{2}

Answers (1)

Given :- \angle BAC=90^{o}

First of all we have find \angle DBA and \angle DAC in triangles ABD and ADC respectively

In \Delta ABD and \angle ADC

\angle ADB=90^{o}

\angle ADC=90^{o}

In \Delta ABC

\angle BAC=90^{o} (given)

Now let us find angle CAD from triangle ADC

Here \angle ADC+\angle DCA+\angle CAD=180^{o}

(sum of interior angles of triangle = 180o)

90^{o}+\angle C+\angle CAD=180^{o}

\angle CAD=180^{o}-90^{o}-\angle C

\angle CAD=90^{o}-\angle C \; \; \; \; \; \; \; \; \; \; \; \; \; ....(1)

Now let us find angle DBA using triangle ABC

Here \angle ABC+\angle BCA+\angle CAB=180^{o}

{sum of interior angles of triangle = 180o}

\angle ABC+\angle C+90^{o}=180^{o}

\angle ABC=90^{o}-\angle C

\angle ABC=\angle DBA=90^{o}-\angle C \; \; \; \; \; \; \; ...(2)

In \Delta ABD and \Delta ADC we get

\angle ADB=\angle ADC  {90o each}

AD=AD {common side}

\angle CAD=\angle DBA  {from equation (1) and (2) it is clear that both is 90^{o}-\angle C}

\therefore \Delta ABD\sim \Delta ADC  (by ASA similarity)

\therefore \frac{BD}{AD}=\frac{AD}{CD}

BD.CD=AD.AD {by cross multiplication}

BD.CD=AD^{2}

Hence option (C) is correct.

Posted by

infoexpert23

View full answer