Get Answers to all your Questions

header-bg qa

In Fig, if PQRS is a parallelogram and   AB \parallel PS then prove that  OC \parallel SR.

Answers (1)

To prove:-

OC \parallel SR

\text{Proof:- In} \Delta OPS \; and \; \Delta OAB

\angle POS=\angle AOB   \text{(common angle)}

\angle OSP=\angle OBA   \text{(corresponding angles)}

\therefore \Delta OPS \sim \Delta OAB  \text{(by AA similarity criterion)}

\Rightarrow \frac{OS}{OB}=\frac{PS}{AB}\; \; \; \; \; \; \; \; ....(i)

\Rightarrow \frac{QR}{AB}=\frac{CR}{CB}

  \frac{PS}{AB}=\frac{CR}{CB}\; \; \; \; \; \; \; \; \; \; ....(2)          \left [ \because \; \text {PQRS is parallelogram,}\therefore PS=QR \right ]

from equation (1) and (2)

\frac{OS}{OB}=\frac{CR}{CB}\; or\; \frac{OB}{OS}=\frac{CB}{CR}

Subtracting 1 from both sides

\frac{OB}{OS}-1=\frac{CB}{CR}-1

\frac{OB-OS}{OS}=\frac{CB-CR}{CR}

\frac{BS}{OS}=\frac{BR}{CR}

We know that if a line divides any two sides of a triangle in the same ratio then by converse of the basic proportionality theorem the line is parallel to the third side.

\therefore SR\parallel OC

Hence proved.

Posted by

infoexpert23

View full answer