Get Answers to all your Questions

header-bg qa

In Fig., PQR is a right triangle right angled at Q and QS \perp PR . If PQ = 6 cm and PS = 4 cm, find QS, RS, and QR.

 

Answers (1)

Given: PQR is a triangle

            \angle Q = 90^{o} \; and\; QS \perp PR

            PQ = 6 cm, PS = 4 cm

In \Delta SQP \; and \; \Delta SRQ

\angle S=\angle S            (common angles and each angle is 90°)

\angle SPQ=\angle SQR                        (each equal to 90^{o}-\angle R)

\therefore \Delta SQP \sim \Delta SRQ                   ( by AA similarity criterion)

\Rightarrow \frac{SQ}{PS}=\frac{SR}{SQ}

By cross multiply we get

SQ^{2}=PS.SR \; \; \; \; \; \; \; ....(1)

In \Delta PSQ use Pythagoras theorem.

PQ^{2}=PS^{2}+QS^{2}

6^{2}=4^{2}+QS^{2}

36-16=QS^{2}

20=QS^{2}

QS=\sqrt{20}=2\sqrt{5}cm

Put QS=2\sqrt{5} in equation (1)

\left ( 2\sqrt{5} \right )^{2}=4 \times SR

\frac{20}{4}=SR

5cm=SR

In \Delta QSR use Pythagoras theorem

QR^{2}=QS^{2}+SR^{2}

QR^{2}=\left ( 2\sqrt{5} \right )^{2}+\left ( 5 \right )^{2}

QR^{2}=20+25

QR=\sqrt{45}=3\sqrt{5}cm

Posted by

infoexpert23

View full answer