Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 Chapter 6 Adjoint and Inverse of a Matrix exercise Fill in the blanks question 16

Answers (1)

Answer   \rightarrow 1

Hint   \rightarrow A(\operatorname{adj} A)=|A| I

Given   \rightarrow A=\left|\begin{array}{cc} \cos x & \sin x \\ -\sin x & \cos x \end{array}\right|    and A(\operatorname{adj} A)=\left[\begin{array}{ll} k & 0 \\ 0 & k \end{array}\right]

Explanation   \rightarrow|A|=\left|\begin{array}{cc} \cos x & \sin x \\ -\sin x & \cos x \end{array}\right|

                \begin{aligned} &=\cos ^{2} x+\sin ^{2} x \\ &=1 \end{aligned}

Since we have \rightarrow A(\operatorname{adj} A)=|A| I

Applying determinant on both side

                |A(\operatorname{adj} A)|=|| A|I|                                                …(i)

Also we have given

              \left | A\left ( adj A \right ) \right |= \begin{bmatrix} k &0 \\ 0 & k \end{bmatrix}= k^{2}\begin{vmatrix} 1 & 0 & 0 &1 \end{vmatrix}                   …(ii)

Comparing (i) and (ii) we get

                \begin{aligned} &|| A|I|=k^{2} \\\\ &|A|^{2}=k^{2} \\\\ &k=1 \end{aligned}

               

               

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads