Get Answers to all your Questions

header-bg qa

explain solution RD Sharma class 12 chapter 8 Continuity exercise Very short answer question 8 maths

Answers (1)

Answer:k=\frac{1}{2}

Hint\lim _{x \rightarrow 0} f(x)=f(0)

Given:  f(x)=\left\{\begin{array}{l} \frac{1-\cos x}{x^{2}}, x \neq 0 \\ k, x=0 \end{array}\right.    is continuous at x = 0

Explanation:

                    As f(x) is continuous at x = 0

                    \begin{aligned} &\lim _{x \rightarrow 0} f(x)=f(0) \\ &\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=k \end{aligned}

                    Applying L’Hospital rule as the function is in 0/0 form,

                    =>\lim _{x \rightarrow 0} \frac{\sin x}{2 x}=k \; \; \; \; \; \; \; \; \; \; \; \; \quad\left[\frac{0}{0} \text { form }\right]

                    =>\frac{1}{2} \lim _{x \rightarrow 0} \frac{\sin x}{x}=k \; \; \; \; \; \; \; \; \; \quad\left[\lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right]

                    =>\frac{1}{2}=k

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads