Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter 8 Continuity exercise multiple choice question 11

Answers (1)


 The correct option is (b)


 Use the given formula:

 \begin{aligned} &\text { (i) } \lim _{x \rightarrow 0} f(x) g(x)=e \lim _{x \rightarrow 0}(f(x)-1) \cdot g(x)\\ &\text { Where } \lim _{x \rightarrow 0} f(x)=1 \end{aligned}

\begin{aligned} &\text { And } \lim _{x \rightarrow 0} g(x)=0\\ &\text { (ii) } \lim _{x \rightarrow 0}\left\{\frac{\cos x-1}{x}\right\}=-1 \end{aligned}

(iii) A function f(x) is said to be continuous at a point x = a of its domain, if

\lim _{x \rightarrow a^{+}} f(a+h)=\lim _{x \rightarrow a^{-}} f(a-h)=f(a)


f(x)=\left\{\begin{array}{l} (\cos x)^{\frac{1}{x}} \\ k \end{array}\right.    \begin{aligned} , x & \neq 0 \\ , x &=0 \end{aligned}

And f(x) is continuous at x = 0


\lim _{x \rightarrow 0} f(x)=f(0)

Calculate the value of k

\lim _{x \rightarrow 0}(\cos x)^{\frac{1}{x}}=k

Using formula (i)

\lim _{x \rightarrow 0} f(x)^{g(x)}=e \lim _{x \rightarrow 0}\left\{\frac{\cos x-1}{x}\right\}=k

Apply formula (ii)

\begin{aligned} &e^{0}=k \\ & k=1 \end{aligned}

So, option (b) is correct.

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support