Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 Chapter 6. Adjoint and Inverse of Matrix excercise 6.2 question 1 maths textbook solution

Answers (1)

Answer:
                \frac{1}{25}\begin{bmatrix} 3 &1 \\ 4&-7 \end{bmatrix}
Hint: Here we use the concept of elementary row operation

Given: \begin{bmatrix} 7 &1 \\ 4&-3 \end{bmatrix}

Solution: A = IA
A = \begin{bmatrix} 1& 0\\ 0& 1 \end{bmatrix}A
\Rightarrow \begin{bmatrix} 7& 1\\ 4& -3 \end{bmatrix} = \begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}A
Applying    R_1 \rightarrow \frac{1}{7}R_1
                \Rightarrow \begin{bmatrix} 1 &\frac{1}{7} \\ 4&-3 \end{bmatrix} =\begin{bmatrix} \frac{1}{7} &0 \\ 0&1 \end{bmatrix}A

Applying    R_2\rightarrow R_2-4R_1
                \Rightarrow \begin{bmatrix} 1 &\frac{1}{7} \\ 0& \frac{-25}{7} \end{bmatrix}=\begin{bmatrix} \frac{1}{7} &0 \\ \frac{-4}{7}&1 \end{bmatrix}A
Applying     R_2\rightarrow \frac{-7}{25}R_2

                \Rightarrow \begin{bmatrix} 1 & \frac{1}{7}\\ 0&1 \end{bmatrix} =\begin{bmatrix} \frac{1}{7}&0 \\ \frac{4}{25}&\frac{-7}{25} \end{bmatrix}
Applying    R_1\rightarrow R_1-\frac{1}{7}R_1
                \Rightarrow \begin{bmatrix} 1 & 0\\ 0&1 \end{bmatrix} =\begin{bmatrix} \frac{21}{75}&\frac{1}{25} \\ \frac{4}{25}&\frac{-7}{25} \end{bmatrix}A

                \Rightarrow \begin{bmatrix} 1 & 0\\ 0&1 \end{bmatrix} =\begin{bmatrix} \frac{3}{25}&\frac{1}{25} \\ \frac{4}{25}&\frac{-7}{25} \end{bmatrix}A

                \Rightarrow A^{-1} = \frac{1}{25}\begin{bmatrix} 3 & 1\\ 4& -7 \end{bmatrix}

Posted by

Infoexpert

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads