# Get Answers to all your Questions

#### Please solve rd  sharma class 12 Chapter 6   Adjoint and Inverse of Matrix excercise 6.2 question 7  maths textbook solution

Answer: $\left[\begin{array}{ccc} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{array}\right]$

Hint: Here, we use the concept of matrix inverse using elementary row operation

Given: $\left[\begin{array}{ccc} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{array}\right]$

Solution: Let $A=\left[\begin{array}{ccc} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{array}\right]$

$A = IA$
\begin{aligned} &A=\left[\begin{array}{ccc} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{array}\right], I=\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \\ &\Rightarrow\left[\begin{array}{lll} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{array}\right]=\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] A \end{aligned}

Applying $R_{1} \rightarrow \frac{1}{2} R_{1}$

$\Rightarrow\left[\begin{array}{lll} 1 & 0 & -\frac{1}{2} \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{array}\right]=\left[\begin{array}{lll} \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] A$

Applying $R_{2} \rightarrow R_{2}-5 R_{1}$

$\Rightarrow\left[\begin{array}{ccc} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{5}{2} \\ 0 & 1 & 3 \end{array}\right]=\left[\begin{array}{lll} \frac{1}{2} & 0 & 0 \\ \frac{-5}{2} & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] A$

Applying $R_{3} \rightarrow R_{3}-R_{2}$

$\Rightarrow\left[\begin{array}{ccc} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{5}{2} \\ 0 & 0 & \frac{1}{2} \end{array}\right]=\left[\begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ \frac{-5}{2} & 1 & 0 \\ \frac{5}{2} & -1 & 1 \end{array}\right] A$

Applying $R_{3} \rightarrow 2 R_{3}$

$\Rightarrow\left[\begin{array}{ccc} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{5}{2} \\ 0 & 0 & 1 \end{array}\right]=\left[\begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ \frac{-5}{2} & 1 & 0 \\ 5 & -2 & 2 \end{array}\right] A$

Applying

\begin{aligned} &R_{1} \rightarrow R_{1}+\frac{1}{2} R_{3} \ \\ &R_{2} \rightarrow R_{2}-\frac{5}{2} R_{3} \\ &\Rightarrow\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]=\left[\begin{array}{ccc} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{array}\right] A \end{aligned}

So,$A^{-1}=\left[\begin{array}{ccc} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{array}\right]$