Get Answers to all your Questions

header-bg qa

Provide Solutio for RD Sharma Class 12 Chapter Continuity Exercise 8.1 Question 36 Subquestion (iii)

Answers (1)

Answer:

No value of k exists.

Hint:

For a function to be continuous at a point, its LHL RHL and value at that point should be equal.

 

Given:

                f(x)=\left\{\begin{array}{r} k\left(x^{2}-2 x\right), \text { if } x<0 \\\\ \cos x, \text { if } x \geq 0 \end{array}\right.

Solution:

                f(x)=\left\{\begin{array}{r} k\left(x^{2}-2 x\right), \text { if } x<0 \\\\ \cos x, \text { if } x \geq 0 \end{array}\right.

We have

(LHL at x=0 )

                \lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} f(0-h)=\lim _{h \rightarrow 0} f(-h)=\lim _{h \rightarrow 0} k\left(h^{2}+2 h\right)=0

(RHL at x=0 )

                  \begin{aligned} &\lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(0+h)=\lim _{h \rightarrow 0} f(h)=\lim _{h \rightarrow 0} \cosh =1 \\ &\lim _{x \rightarrow 0^{+}} f(x) \neq \lim _{x \rightarrow 0^{-}} f(x) \end{aligned}

Thus no value of k  exists for which f\left ( x \right )  is continuous at x=0

 

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads