Get Answers to all your Questions

header-bg qa

Provide Solutio for RD Sharma Class 12 Chapter Continuity Exercise 8.1 point 12 Question 31

Answers (1)

Answer:

k=\frac{1}{2}

Hint:

f\left ( x \right )  must be defined. The limit of the  f\left ( x \right ) approaches the value x must exist.

Given:

                f(x)=\left\{\begin{array}{c} \frac{2^{x+2}-16}{4^{x}-16}, \text { if } x \neq 2 \\\\ k, \text { if } x=2 \end{array}\right.

Solution:

                f(x)=\left\{\begin{array}{c} \frac{2^{x+2}-16}{4^{x}-16}, \text { if } x \neq 2 \\\\ k, \text { if } x=2 \end{array}\right.

If f\left ( x \right )  is continuous at x=2 ,

                \begin{aligned} &\lim _{x \rightarrow 2} f(x)=f(2) \\ &\lim _{x \rightarrow 2} \frac{2^{x+2}-16}{4^{x}-16}=f(2) \end{aligned}

                \lim _{x \rightarrow 2} \frac{4\left(2^{x}-4\right)}{\left(2^{x}-4\right)\left(2^{x}+4\right)}=k   [Taking 4 as common]                       \left[\because a^{2}-b^{2}=(a+b)(a-b)\right]

                \begin{aligned} &\lim _{x \rightarrow 2} \frac{4}{\left(2^{x}+4\right)}=k \\ &\frac{4}{\left(2^{2}+4\right)}=k \\ &k=\frac{4}{8} \\ &k=\frac{1}{2} \end{aligned}

               

               

               

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads