Get Answers to all your Questions

header-bg qa

Provide solution for rd sharma class 12 chapter 6 Adjoint and Inverse of Matrix excercise 6.2 question 2

Answers (1)

Answer: A^{-1}=\begin{bmatrix} 1 &-2 \\ -2& 5 \end{bmatrix}

Hint: Here, we use the basic of matrix transpose

Given: \begin{bmatrix} 5 &2 \\ 2& 1 \end{bmatrix}

Solution: Let A = IA
                A = \begin{bmatrix} 5 &2 \\ 2& 1 \end{bmatrix}, I = \begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}

                  \Rightarrow \begin{bmatrix} 5 &2 \\ 2& 1 \end{bmatrix}=\begin{bmatrix} 1 & 0\\ 0& 1 \end{bmatrix}A

              

Applying     R_1 = \frac{1}{5}R_1

                \Rightarrow \begin{bmatrix} 1 &\frac{2}{5} \\ 0&\frac{1}{5} \end{bmatrix} = \begin{bmatrix} \frac{1}{5} & 0\\ 0& 1 \end{bmatrix}A

              

Applying     R_2 = R_2 - 2R_1
                        

              \Rightarrow \begin{bmatrix} 1 &\frac{2}{5} \\ 0&\frac{1}{5} \end{bmatrix} = \begin{bmatrix} \frac{1}{5} & 0\\ \frac{-2}{5}& 1 \end{bmatrix}A

             \Rightarrow \begin{bmatrix} 1 & \frac{2}{5}\\ 0&1 \end{bmatrix}=\begin{bmatrix} \frac{1}{5}&0 \\ -2& 5 \end{bmatrix}A

Applying         R_2\rightarrow 5R_2


                \Rightarrow \begin{bmatrix} 1 &\frac{2}{5} \\ 0 &1 \end{bmatrix}=\begin{bmatrix} \frac{1}{5} &0 \\ -2& 5 \end{bmatrix}A

Applying     R_1 \rightarrow R_1-\frac{2}{5}R_2


               \Rightarrow \begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}=\begin{bmatrix} 1 &-2 \\ -2& 5 \end{bmatrix}A
              

              

So, Here  A^{-1}=\begin{bmatrix} 1 &-2 \\ -2& 5 \end{bmatrix}

Posted by

Infoexpert

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads